The Pennsylvania State University

Architectural Engineering

PARK POTOMAC OFFICE BUILDING "E"

Potomac, MD

Kyle Wagner

Structural Option (IP)

Advisor: Professor Kevin Parfitt

05/07/2010

[SENIOR THESIS FINAL REPORT]

Park Potomac Office Building "E"

Potomac, MD

Kyle Wagner Structural Option

BUILDING STATISTICS

Location: 12505 Park Potomac Ave. **Size:** 160,000 sq. ft. Office Space

14,000 sq. ft. Retail 213,000 sq. ft. Parking **No. of Stories**: 7 Above Grade

2 Levels Below Grade Parking

Delivery Method: Design-Bid-Build **Construction**: Oct 2007 - June 2009

Development Team: Foulger-Pratt **Architect:** DAVIS, CARTER, SCOTT

Civil Engineer: VIKA, Inc.

Structural: Cagley & Associates MEP: Allen & Shariff Corporation Landscape Architect: Studio 39

STRUCTURAL SYSTEM

- Spread footings on soil with 3000-4000psf bearing capacity
- Post-Tensioned beams span building width
- 7" Thick post-tensioned slab
- Slab cantilevered over 12' at both building ends to provide seamless glass around building corners

MECHANICAL SYSTEM

- Two Rooftop Air Handling Units supply 80,000 cubic feet of air per minute
- Rooftop cooling tower (484 GPM)
- Carbon Monoxide detectors and exhaust fans protect parking garage

LIGHTING/ELECTRICAL

- Power supplied by two utility transformers
- Two 1600A bus duct risers
- Each floor served by 250A Panelboards
- Flourescent lamps used throughout office
- Metal Halide fixtures in garage

Kyle Wagner Park Potomac Office Building "E"

Structural Option Potomac, MD

Consultant: Professor Parfitt 05/07/2010

Thesis Final Report

Acknowledgements

Cagley & Associates

- Frank Malits
- Daniel Camp

Foulger-Pratt

Karl Alt

PSU AE Faculty

- Professor Kevin Parfitt
- Dr. Ali Memari
- Dr. Linda Hanagan

I would like to thank everyone who supported and assisted me throughout the year. I cannot express how much your support is appreciated.

Structural Option

Potomac, MD

Consultant: Professor Parfitt

05/07/2010

Thesis Final Report

Table of Contents

	Executive Summary 7
II.	Introduction/Material Strengths8
III.	Codes and Design Standards9
IV.	Existing Structural System10
V.	Problem/ Proposed Solution
VI.	Gravity Loads15
VII.	RAM Model17
VIII.	Gravity Redesign
IX.	Floor Depth Comparison
Χ.	Lateral Loads
	• Wind
XI.	• Wind
	• Wind
XI.	• Wind

Kyle Wagner

Park Potomac Office Building "E"

Structural Option

Potomac, MD

Consultant: Professor Parfitt

05/07/2010

Thesis Final Report

	Summary	43
XV.	Foundation Redesign	44
XVI.	Architectural Study	45
XVII.	Typical Connection Design	47
XVIII.	Summary of Design Steps	48
XIX.	Cost and Schedule Study	49
XX.	Conclusion	51
XXI.	Credits/ Acknowledgements	52
XXII.	 Appendix A: Gravity Design Spot Checks	61 67 72
XXIII.	Appendix B: Wind	81
XXIV.	Appendix C: Seismic • Seismic Analysis Calculations • Formulation of Building Weight • Seismic Calculations	93
XXV.	Appendix D: Lateral Analysis Overturning Brace Design	
XXVI.	Appendix E: Connection Design • Shear Tab • Unstiffened Seat • Base Plate	112 115 119

Kyle WagnerPark Potomac Office Building "E"Structural OptionPotomac, MDConsultant: Professor Parfitt05/07/2010Thesis Final Report

XXVII.	Apper	ndix E: Cost/Schedule Analysis	
	•	Original Structure Cost Estimate	123
	•	Redesign Cost Analysis	129
	•	Summary	133
	•	General Conditions	134
	•	Original Structure Schedule	135
	•	Steel Redesign Schedule	137
	•	Schedule Comparison	139

Consultant: Professor Parfitt 05/07/2010

Thesis Final Report

Executive Summary

The purpose of this report is to examine a possible alternative structural system for Park Potomac Office Building "E." This structure is a seven story, roughly 100 feet tall office building located in Potomac, MD. The seven office levels are each roughly 25,000 square feet and sit on top of two large levels of mostly underground parking. For this report, the seismic base level was taken at the top of the parking levels and the wind load on the parking levels was considered negligible.

The original structure was all cast in place post-tensioned concrete. Concrete columns supported a thin floor and moment frames were utilized to resist the majority of the lateral forces in both directions. This system was adequate and efficient; however, the large self weight left room for improvement and cost savings through a redesign of the system.

The office levels of the project were redesigned using composite beams, lightweight concrete on metal deck, and steel supporting columns. Braced frames were used in both directions to resist the lateral forces on the structure.

The steel beams resulted in a deeper floor depth than the original design, so the overall height of the structure needed to be increased. This increase, as well as the change in seismic weight, required the need for recalculation of lateral design forces. After recalculation of the loads, it was determined that 0.9D + 1.6W was primarily the controlling load case for the structure. Additionally, overall building torsion was found to be negligible, overturning of the building was not critical (although there were several areas of uplift at the base of the office levels at the braced frames), and all drift limitations were satisfied.

After designing the new structure, the five large mat foundations used in the original design were redesigned as a series of $17' \times 17'$ foundations. This resulted in a 79% cost reduction for foundations and schedule improvements as well.

An architectural study was completed, analyzing the location of the braced frames with the existing floor layout. Also, the design of several connections was completed.

The cost and schedule impacts were compared for the two options and it was determined that the steel structure will cost approximately \$20.69 /SF versus the post-tensioned structure, which cost \$27.83 /SF. This resulted in savings of approximately 25% of the total structure's cost, while the schedule showed duration reduction as well.

Consultant: Professor Parfitt 05/07/2010

Thesis Final Report

Introduction

Park Potomac Office Building "E" is located prominently off I-270 at Seven Locks and Montrose Roads. It is just one of several planned office buildings that are part of an "urban village" which mixes stunning town homes, Class A office space, and a wide range of amenities including dining and shopping.

Office Building "E" is a central part of the Park Potomac Master Plan. Its central location, at the end of Cadbury Avenue, makes it a focal point for this small community (Figure 1). It is located in the main courtyard that will be a retail gathering point as well.

Figure 1: View from Cadbury Ave.

Material Strength Summary

Concrete:

Footings	3000 psi
Foundation Walls	4000 psi
Columns	Varies
Slab-on-Grade	3500 psi
Reinforced Slabs & Beams	5000 psi
Parking Structure	5000 psi
P.T. Concrete	5000 psi

Structural Steel:

Wide Flanges & Tees ASTM A992, Fy = 50 ksi

Square/Rectangular Hollow Shapes ASTM A500, Grade B, Fy = 46 ksi

Masonry:

Compressive Strength 1500 psi

Consultant: Professor Parfitt 05/07/2010

Thesis Final Report

Codes & Design Standards

Original Design:

- a. "The International Building Code 2003", International Code Council
- b. "Minimum Design Loads for Buildings and Other Structures" (ASCE7-02), American Society of Civil Engineers
- c. "Building Code Requirements for Structural Concrete, ACE 318-02", American Concrete Institute
- d. "ACI Manual of Concrete Practice- Parts 1 Through 5", American Concrete Institute
- e. "Manual of Standard Practice", Concrete Reinforcing Steel Institute
- f. "Post Tensioning Manual", Post Tensioning Institute
- g. "Manual of Steel Construction- Allowable Stress Design", Ninth Edition, 1989, American Institute of Steel Construction (Including specifications for structural steel buildings, specifications for structural joints using ASTM A325 of A490 bolts and AISC Code of Standard Practice)

Substituted for thesis analysis:

- a. "The International Building Code 2006", International Code Council
- b. "Minimum Design Loads for Buildings and Other Structures" (ASCE7-05), American Society of Civil Engineers
- c. "Building Code Requirements for Structural Concrete, ACI 318-08", American Concrete Institute

Consultant: Professor Parfitt 05/07/2010

Thesis Final Report

Existing Structural System

Foundations:

Park Potomac Office Building "E" consists of a seven story office building (Approx. 100' high) that sits above two levels of underground parking. The parking structure levels have a footprint of over 103,000 sq. ft. This is much larger than the office structure, which has a footprint of just more than 25,000 sq. ft.

This relationship also has a large impact on the design of the foundations. The net allowable bearing pressures for the site are 4000 psf for undisturbed soil and 3,000 psf for foundations placed on compacted structural fill. Over 150 spread footings are used throughout the project (Figure 2). All footings are 3000 psi concrete, and foundation walls are 4000 psi concrete. Spread footings, mostly ranging from $10' \times 10'$ to $12' \times 12'$, are used beneath the two levels of parking with no office building above. The majority of these footings are between 28'' and 34'' deep.

Larger mat footings are used in the center of the project, taking load from the two parking levels and also from the office building above. These larger foundations are up to $52' \times 64'$ in size and can be up to 62'' deep.

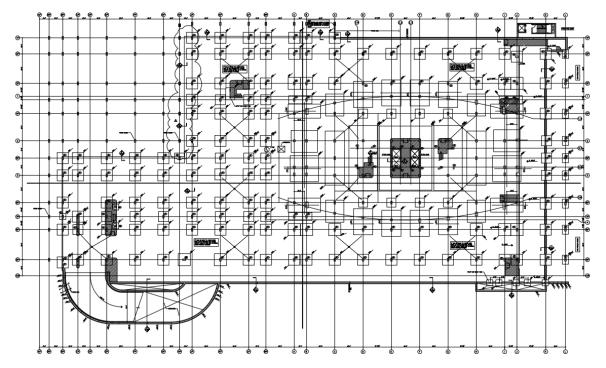


Figure 2: Foundation Plan

Park Potomac Office Building "E"

Structural Option Potomac, MD

Consultant: Professor Parfitt 05/07/2010

Thesis Final Report

Floor System:

The slab on grade at the P2 Parking Level is a 5" thick, 3500 psi concrete slab. It is reinforced with $6x6 - W2.0 \times W2.0$ welded wire fabric. All other slabs contain 5000 psi concrete. Two-way flat slabs are used at the P1 Parking level and the Plaza/First Floor Level as well. The slab is 8" thick at the P1 Level and 12" thick at the Plaza/First Floor Level. These slabs are reinforced as needed to resist negative moments at the columns and positive moments at midspan. Post-tensioning is not used on the parking levels. Tying a post-tensioned slab into foundation walls or other fixed structure does not allow the post-tensioned slab to shrink when stressed. This would result in cracking of the slab if post-tensioning was used below grade. Using this method for the parking garage would also lead to difficulty in stressing the tendons as well. The designers of Office Building "E" used mild reinforcing below grade, and post-tensioning for the slabs above grade.

Above the Plaza Level, Office Building "E" has seven levels of office floors. These floors are 7" thick post-tensioned slabs. The post-tensioning cables induce forces in the slab ranging from 12.5 k/ft up to 35 k/ft. The post-tensioning system uses grouped tendons in the 20" beams in the E-W direction, and a one way slab with uniform tendon layout in the N-S direction. This design allows for ease of construction when laying out the tendons. The post-tensioned slab also allows for cantilevers that exist at the North and South ends of the structure. The load from a 12' cantilever on each end is taken by the uniformly spaced tendons that run through the slab.

Post-tensioning is crucial to achieving several main goals on this project. The first main goal is that it allows for large spans in the floor layout. The design of this project requires that columns be placed around the exterior walls of the building and the interior core as well. This requires the beams and slab to span long distances over the floor. Post-tensioning achieves these span requirements while maintaining a slab thickness of just seven inches. Deflection over these spans is controlled effectively, while cracking is reduced as well.

Several steel shapes are utilized on the second floor slab to frame out the canopies above the East and West building entrances. This framing consists of TS5x2 shapes that are welded to ¾" plates and hung from the bottom of the slab by L4x4 angles. Steel shapes (W8x10) are also utilized as elevator rail supports throughout all floors.

Consultant: Professor Parfitt 05/07/2010

Thesis Final Report

Gravity System:

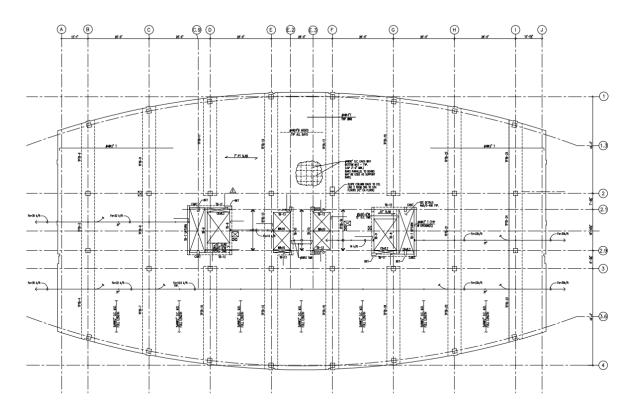


Figure 3: Typical Framing Plan

The majority of the columns in the two levels of parking are 18" x 36" columns reinforced with 10 #9 bars. These columns are typically spaced between 15' and 30' apart. Columns supporting only the two parking levels consist of 4000 psi concrete, while 6000 psi concrete is utilized where load from the office building portion above is carried. Columns in the parking levels utilize drop panels to spread the load and resist punching shear.

In the office portion of the project, a relatively repetitive column layout is achieved. Excluding the central building core, 32 columns are used to transfer the load down through all seven levels. Long span post-tensioned beams are used to transfer load from the floor to the columns. At typically 20" x 72" in size, these shallow, wide beams span in the E-W direction and continue the entire building width. In order to minimize the amount of columns in the tenant spaces and promote flexible space planning, large spans up to nearly 45' exist on each floor.

Kyle Wagner

Park Potomac Office Building "E"

Structural Option Potomac, MD

Consultant: Professor Parfitt 05/07/2010

Thesis Final Report

Columns on the office levels are 24" x 24" at every level, and the concrete strength is varied throughout the levels to support an increased load as required. The plaza level through the fourth floor uses 5000 psi concrete, while 4000 psi concrete is used above the fourth floor.

Lateral System:

Park Potomac Office Building "E" uses concrete moment frames, as well as shear walls to resist lateral forces. In the E-W direction, the wide post-tensioned beams on each floor create a series of parallel frames that run up through all seven floors. These frames resist any lateral forces on the building in the parallel direction.

Similarly, forces in the N-S direction are resisted by concrete moment frames as well as by four shear walls. The concrete columns and the 7" slab, which is post-tensioned in the N-S direction, combine to create a frame that resists lateral forces in this direction as well.

Roof System:

The main roof system consists of a 7" to 8" structural slab. This slab varies in order to create the required roof slopes throughout. The roof contains a Penthouse/Mechanical space, as well as an elevator machine room. The penthouse roof is an 8" two way flat plate system, while the elevator machine room utilizes a 12" thick slab.

TS8x8 posts and TS 6x6 supports are used to frame a 16' tall screen-wall on the roof level to isolate the mechanical spaces from view.

The penthouse spaces will be largely neglected in the redesign and analysis of the structure.

Consultant: Professor Parfitt 05/07/2010

Thesis Final Report

Problem Statement

The post-tensioned concrete structure used for Office Building "E" has proved sufficient to resist the required lateral and gravity loads for the structure. The shallow post-tensioned slab allows for long spans and minimizes the need for columns in the rentable spaces on all floors. However, the large building self weight creates a need for large mat foundations that have a negative impact on the cost and schedule aspects of the job.

Proposed Solution

In Technical Report #2, several alternative floor systems were explored as possible options for use in the structure. The main emphasis of this study was to maintain the current column layout to maximize the unobstructed rentable area. This study showed that using a composite steel floor system could provide a viable alternative to the current system. Use of lightweight concrete was also considered as a possibility.

Using a steel structure for the office levels rather than a post-tensioned structure had several major impacts resulting from the reduced building self weight. The large mat foundations currently used beneath the office building were reduced in size, which had significant cost and schedule impacts on the project. Additionally, the building's gravity system was not required to carry as much load, which resulted in cost savings due to a reduction in member sizes. The parking levels remained the same in the structural redesign.

The redesign of the structural system also required a redesign of the existing concrete moment frame lateral resisting system. Braced frames were used to resist lateral loads for the new lateral system. Lateral forces were recalculated and reconsidered for wind and seismic forces, taking into account changes in both the height and seismic weight of the structure.

There were a few negative aspects to changing the design as well, which were explored in detail. The first of which is the increased floor depth due to the steel members. This required consideration of mechanical spaces and resulted in increasing the overall building height. Additionally, fireproofing of beams and columns will need to be completed in the new structure, resulting in some additional costs.

• A detailed study was also performed to compare the new structure with the original design. All of this will be discussed in more detail in this report.

Consultant: Professor Parfitt 05/07/2010

Thesis Final Report

Gravity Loads

Floor live loads were determined using ASCE 7-05. These loads were then compared to the design loads used in the original design. The design loads were largely the same as those from ASCE 7-05. A few of the loads used exceeded the required loadings from ASCE 7-05. These loads can be found below.

Table 1: Floor Live Loads						
Area	Design Load (psf)	ASCE 7-05 Load (psf)				
Assembly Areas	100	100				
Corridors	100	100				
Corridors Above First Floor	80	80				
Lobbies	100	100				
Marquees & Canopies	75	75				
Mechanical Rooms	150	125				
Offices	80 + 20 psf Partitions	50 + 20 psf Partitions				
Parking Garages	50	40				
Plaza, Top Floor Parking	Fire Truck Load or 250 psf	250				
Retail- First Floor	100	100				
Stairs and Exitways	100	100				
Storage (Light)	125	125				

The following superimposed dead loads were also considered in the design of the structure.

Table 2: Superimposed Dead Loads					
Area Design Load (psf)					
Floors	5				
Roof	10				

These gravity loads used in the redesign were the same as the original loads used.

Consultant: Professor Parfitt 05/07/2010

Thesis Final Report

A flat roof snow load was calculated for this report as well. Beginning with a 30 psf ground snow load for Montgomery County, a flat roof snow load of 21 psf was calculated using the variables shown below from ASCE 7-05. This snow load of 21 psf was identical to the design snow load used by the structural engineer. Snow drift loads will occur on the roof level around the screen walls; however, this drift loading was not examined in this report.

Table 3: Flat Roof Snow Load							
Ground Snow Load	P _g =	30	psf				
Snow Exposure Factor	C _e =	1.0					
(Terrain Category B)							
Thermal Factor	C _t =	1.0					
Importance Factor	l=	1.0					
Flat Roof Snow Load	p _f	21	psf				

Consultant: Professor Parfitt 05/07/2010

Thesis Final Report

RAM Model

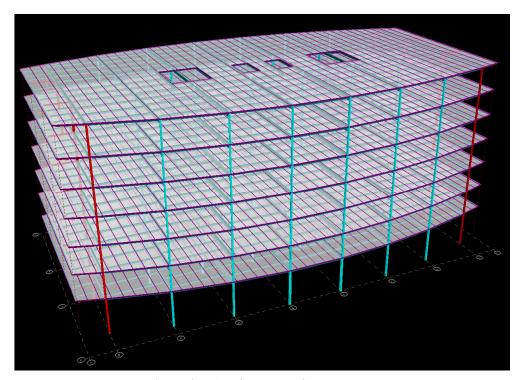


Figure 4: RAM Structural System Model

RAM Structural System was used to perform the gravity load calculations for the beams and columns of the structure. A 5-1/2" thick slab was used with lightweight (115 pcf) concrete and 2" Lok-floor decking. This provided the adequate two hour fire barrier between floors. The beam spacing was chosen to maintain a 10' maximum deck span over the floor, which was adequate for unshored criteria for 18 gage deck spans (United Steel Deck Catalog). This was done in an effort to minimize the number of beams required to carry the load. Composite beams were utilized in the design as well.

The slab cantilever condition, which can be seen in the model above, had to be considered in a unique way using RAM. "Dummy" concrete columns with approximately zero size and stiffness were added at the end of each cantilever beam. The beams at each end were moment connected to the interior column, which was created as a lateral element. The lateral elements can be seen above in red, whereas the gravity only elements are shown in blue.

The cantilevered ends will be considered in more detail later in this report.

Consultant: Professor Parfitt 05/07/2010

Thesis Final Report

Typical Gravity Design

Figure 5: Typical Redesign Framing Plan

Gravity design for the structure was completed using the RAM Model described in the previous section. Beam cambers and the number of studs required were not shown for clarity.

Gravity columns were also designed using RAM. The columns that are a part of the braced frames, as well as the columns at the cantilevered ends (Grids B and I) were designed separately and are available in the later sections of the report. All column designs were determined using a splice at every other story (two story high columns), for ease of construction.

All hand calculations and spot checks for beams and columns are shown in Appendix A.

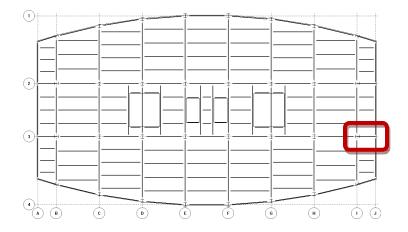
Consultant: Professor Parfitt 05/07/2010

Thesis Final Report

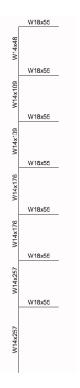
Cantilevered Ends

The original structure had one feature that was especially desired by the owner of the project. A 12' cantilever was utilized on the North and South ends of the structure. This allowed the column line along that edge to be set back in order to create the sense of unobstructed glass along the outside wall, and especially around the corners of the structure. This situation can be seen in the photo below:

Figure 6: View of South-West Corner


In the original design, the cantilever was achieved by the post-tensioning in the slab, as well as by running #4 reinforcing bars at 12" at the top of the slab.

This cantilever was also considered in the redesign. Using steel beams which cantilever out to transfer the load back to the columns through moment connections, the cantilever was successfully designed for the steel structure. Moment connections were utilized at both beams attaching to both sides of the columns to balance the moment. Column splices would need to be capable of carrying moment down the column line as well.


Consultant: Professor Parfitt 05/07/2010

Thesis Final Report

The weight of the cantilever at each end was supported by four beams; one beam along each edge of the structure, one beam on column line two, and one along column line three. After analyzing the tributary areas of each beam, it is clear that the interior beams will be critical. The beam along grid three (shown below) was the beam analyzed below. This design was applied to all of the cantilever beam situations.

After finding the loads on the beam and designing it accordingly, taking into account the composite action in the slab, it was determined that using a W18x55 would be adequate for the cantilever beam situations.

Moment connections were used on both sides of each column. The outside connection carried the load due to the cantilever slab. A moment connection was used on the inside of the columns as well, to help balance the moment at the column induced by the cantilever load. The cantilever side induced a moment of 575 ft-k, while the interior span induced only 376 ft-k. This was the maximum that was possible on the interior span due to the existing column layout.

Taking these moments into account, as well as the gravity load in the column, the columns on grids B and I were designed. The final design is shown at left.

All calculations are available in Appendix A.

Consultant: Professor Parfitt 05/07/2010

Thesis Final Report

Floor Depth Comparison

One main advantage of the original system over the steel redesign is the very shallow floor depth of the original post-tensioned system. The 20" total depth is shown below:



Figure 7: Original Floor Depth

After the redesign of the gravity loads on the floor system, it is evident that the deepest beam (W27x84) occurs at the 45 feet span shown below:

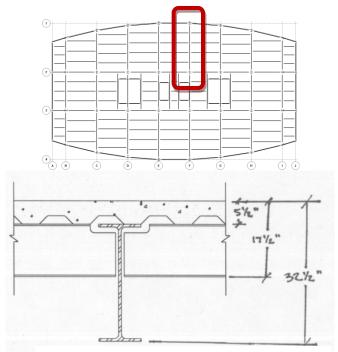


Figure 8: Redesign Floor Depth

It is clear that the new floor system increases the floor depth by approximately 12" per floor. It was important for this analysis to maintain the ceiling height in order to maintain the value of the rental spaces. It was also critical to keep the same amount of space for MEP. This left the option to increase the overall height of the structure by about one foot per floor in order to maintain these spaces. The overall height was increased by seven feet, and the new lateral forces were calculated accordingly below.

Consultant: Professor Parfitt 05/07/2010

Thesis Final Report

Wind Loads

Method two, detailed in Chapter 6 of ASCE 7-05, was used to determine the wind loading for the structure. Wind loadings in the N-S and the E-W directions were both analyzed. Detailed calculations can be found in Appendix B of this report. The analysis revealed the uniform pressures that occurred due to wind, which allowed the base shears and overturning moments to be determined as well.

Wind analysis for the E-W direction can be seen below. Roof uplift forces were not considered for the lateral analysis. Unfactored wind forces and loading diagrams used for the redesigned structure can be found below:

Table 4: E-W Design Pressures							
Level	Height (ft above Plaza)	Design Pressure Windward (psf)	Design Pressure Leeward (psf)	Total Pressure (psf)	Force of Total Pressure (k)	Story Shear Total (k)	
Plaza Level	0	6.83	-7.41	14.24	28.69	423.35	
	9	6.83	-7.41	14.24			
2nd Floor	18	7.37	-7.41	14.78	50.44	394.66	
	24.25	8.04	-7.41	15.45			
3rd Floor	30.5	8.59	-7.41	16.00	44.76	344.22	
	36.75	9.07	-7.41	16.48			
4th Floor	43	9.49	-7.41	16.90	47.27	299.46	
	49.25	9.87	-7.41	17.28			
5th Floor	55.5	10.21	-7.41	17.62	49.29	252.19	
	61.75	10.53	-7.41	17.94			
6th Floor	68	10.83	-7.41	18.24	51.01	202.90	
	74.25	11.10	-7.41	18.52			
7th Floor	80.5	11.36	-7.41	18.78	53.57	151.88	
	87	11.62	-7.41	19.03			
Main Roof	93.5	11.86	-7.41	19.27	28.03	98.32	
Penthouse	109.5	12.37	-7.26	19.63	70.28	70.28	

Base Shear	423	K
------------	-----	---

Consultant: Professor Parfitt 05/07/2010

Thesis Final Report

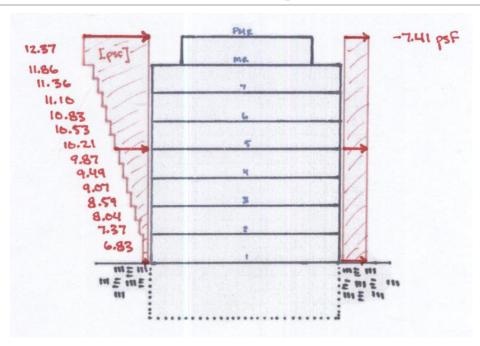


Figure 9: East – West Design Pressures

Kyle Wagner

Structural Option Potomac, MD

Consultant: Professor Parfitt 05/07/2010

Thesis Final Report

Analysis results for the N-S wind direction can be found below. It was assumed that the minimal wind exposure on the below grade parking levels was negligible for this analysis. Unfactored results and loading diagrams can be found below for the N-S wind direction:

Table 5: N-S Design Pressures							
Level	Height (ft above Plaza)	Design Pressure Windward	Design Pressure Leeward	Total Pressure (psf)	Force of Total Pressure	Story Shear Total (k)	
Plaza Level	0	(psf) 6.83	(psf) -5.19	12.02	(k)	210.28	
	9	6.83	-5.19	12.02			
2nd Floor	18	7.37	-5.19	12.56	24.42	196.49	
	24.25	8.04	-5.19	13.23			
3rd Floor	30.5	8.59	-5.19	13.78	21.96	172.07	
	36.75	9.07	-5.19	14.26			
4th Floor	43	9.49	-5.19	14.68	23.39	150.11	
	49.25	9.87	-5.19	15.06			
5th Floor	55.5	10.21	-5.19	15.40	24.54	126.72	
	61 <i>.</i> 75	10.53	-5.19	15.72			
6th Floor	68	10.83	-5.19	16.02	25.52	102.17	
	74.25	11.10	-5.19	16.29			
7th Floor	80.5	11.36	-5.19	16.55	26.91	76.65	
	87	11.62	-5.19	16.81			
Main Roof	93.5	11.86	-5.19	1 <i>7</i> .05	14.13	49.74	
Penthouse	109.5	12.37	-5.08	17.46	35.61	35.61	

Base Shear	210	K
------------	-----	---

Consultant: Professor Parfitt 05/07/2010

Thesis Final Report

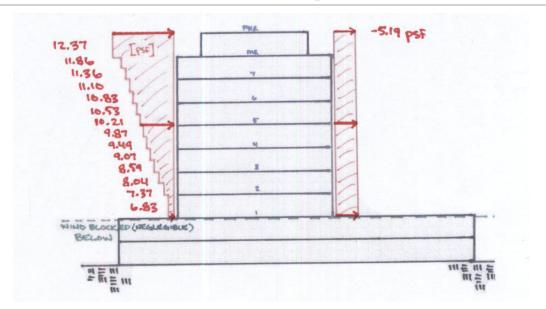


Figure 10: North - South Wind Pressures

The additional height increase for the structure has slightly increased the wind loading of the structure. This was anticipated and is reflected in the analysis. The original structure's base shear due to wind was 207K in the N-S direction and 416K in the E-W direction. This is slightly less than the redesign forces of 210K in the N-S direction and 423K in the E-W direction.

It is also logical that the base shear in the N-S direction would be approximately two times the base shear in the E-W direction due to the fact that the surface area is approximately twice as large.

Consultant: Professor Parfitt 05/07/2010

Thesis Final Report

Seismic Loads

The layout of the parking levels and the surrounding ground created unique seismic considerations for Office Building "E." The two levels of underground parking were mostly below grade, except on the North side of the structure. This scenario can be seen below.

Figure 11: View from North

Although it is evident that the parking levels are partially exposed on the North side, it was assumed for this analysis that the seismic base level will be at the plaza level (above the below grade parking levels) for the structure. This is due to the fact that the parking levels are largely below grade and will act as being mostly fixed. This assumption was confirmed by results obtained in Technical Report #1. For this report, only the office levels will be considered for seismic in both directions.

The seismic analysis in this report was completed using Chapters 11 and 12 from ASCE 7-05. The equivalent lateral force procedure was determined to be valid for this analysis. Detailed calculations, including updated building self weights and other variables, are available in Appendix C. The main variables used in the analysis are shown below.

Kyle Wagner

Structural Option Potomac, MD

Consultant: Professor Parfitt 05/07/2010

Thesis Final Report

Table 6: Seismic Design Variables					
			ASCE Reference		
Soil Classification		D	Table 20.3-1		
Occupancy		Ш	Table 1-1		
Importance Factor		1.0	Table 11.5-1		
Structural System		Steel System	Table 12.2-1		
Spectral Response Acceleration, Short	Ss	0.156	USGS Website		
Spectral Response Acceleration, 1 s	S ₁	0.051	USGS Website		
Site Coefficient	Fα	1.6	Table 11.4-1		
Site Coefficient	F _v	2.4	Table 11.4-2		
MCE Spectral Response Acceleration, Short	S _{MS}	0.2496	Eq. 11.4-1		
MCE Spectral Response Acceleration, 1 s	S _{M1}	0.1224	Eq. 11.4-2		
Design Spectral Acceleration, Short	S _{DS}	0.166	Eq. 11.4-3		
Design Spectral Acceleration, 1 s	S _{D1}	0.081	Eq. 11.4-4		
Seismic Design Category	S _{DC}	В	Table 11.6-2		
Response Modification Coefficient	R	3	Table 12.2-1		
Approximate Period Parameter	C _t	0.02	Table 12.8-2		
Building Height (E-W)	hn	100.5'			
Structure Period Exponent	k	1.58			
Approximate Period Parameter	х	0.75	Table 12.8-2		
Fundamental Period (E-W)	Т	1.6055 s	Eq. 12.8-7		
Fundamental Period (N-S)	T	1.6672 s	Eq. 12.8-7		
Long Period Transition Period	ΤL	8.0 s	Fig. 22-15		
Seismic Response Coefficient	Cs	0.025	Eq. 12.8-2		

After calculation of the overall building self weight (See Appendix C), base shears were calculated in order to calculate the forces on the structure. The base shears are shown below in Table 7. The base shears obtained were similar in magnitude to the value of 300K calculated by the design engineer. The values calculated in this report will be used for further analysis.

Kyle Wagner

Structural Option Potomac, MD

Consultant: Professor Parfitt 05/07/2010

Thesis Final Report

Table 7: Base Shears					
Effective Seismic Seismic Response Bas Weight Coefficient Shear					
N-S	W = 8895 K	$C_s = 0.0250$	222		
E-W	W = 8895 K	$C_s = 0.0250$	222		

After the calculation of the base shear values for each direction, the forces can be distributed throughout the building to determine forces at each level and story shear values. The values below are all unfactored.

Table 8: Seismic Calculations						
Level	Story Weight (K)	N-S Height (ft)	Forces (K) Fx	Story Shear Vx	Moments (ft-k) Mx	
Penthouse	211.8	116.5	6	0	721	
Main Roof	423.6	100.5	15	6	1472	
7th Floor	1270.7	86.5	66	21	5673	
6th Floor	1270.7	73.0	50	86	3661	
5th Floor	1270.7	59.5	36	137	2160	
4th Floor	1270.7	46.0	24	173	1112	
3rd Floor	1270.7	32.5	14	197	454	
2nd Floor	1906.1	19.0	11	211	216	
Plaza/First Floor	0.0	0.0	0	222	0	
Total:	8895		222		15469	

$\sum w_i h_i^k$	312756036

Consultant: Professor Parfitt 05/07/2010

Thesis Final Report

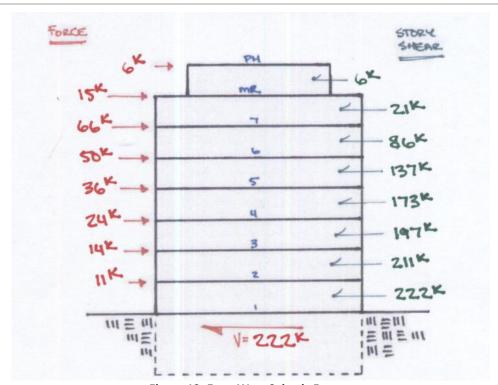
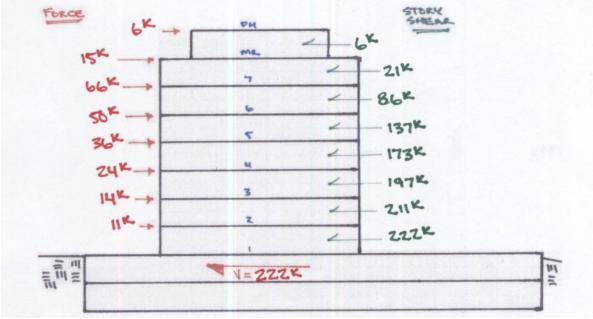
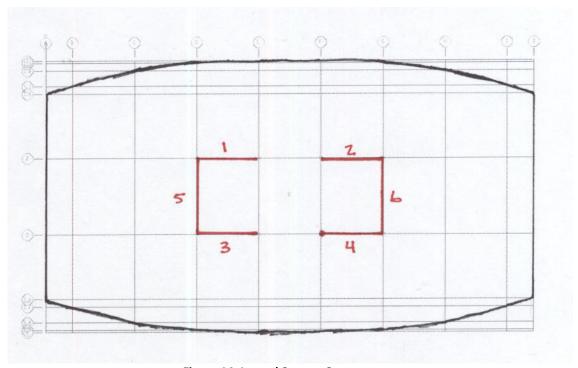



Figure 12: East- West Seismic Forces

Figure 13: North- South Seismic Forces

Consultant: Professor Parfitt 05/07/2010


Thesis Final Report

Load Path

In the original post-tensioned design, concrete moment frames were used to resist lateral forces in both directions. Essentially, the entire building took part in resisting lateral loads. In the redesign of the structure, braced frames were used to resist lateral forces. In the N-S direction, four braces were used, while only two braced frames were used to resist even larger loads in the E-W direction. This had to be taken into account when designing the braces, which will be detailed later in this report.

In both directions, the floor diaphragm transfers lateral forces to the braced frames at each level. The braced frame columns transfer these loads down the building through shear and axial column forces. This process continues throughout the building and down to the foundations, where the forces are transferred to the soil.

A basic plan of the redesigned lateral system is shown below in the figure. The braced frames for both directions are shown in red and numbered accordingly.

Figure 14: Lateral System Components

Consultant: Professor Parfitt 05/07/2010

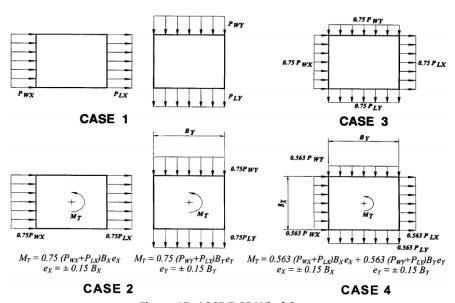
Thesis Final Report

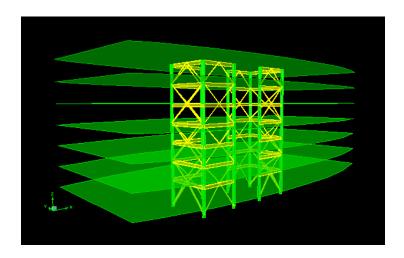
Load Combinations

Per ASCE 7-05 Section 2.3.2, seven load combinations must be considered when dealing with strength design. They are outlined below:

- 1. 1.4(D + F)
- 2. 1.2(D + F + T) + 1.6(L + H) + 0.5(Lr or S or R)
- 3. 1.2D + 1.6(Lr or S or R) + (L or 0.8W)
- 4. 1.2D + 1.6W + L + 0.5(Lr or S or R)
- 5. 1.2D + 1.0E + L + 0.2S
- 6. 0.9D + 1.6W + 1.6H
- 7. 0.9D + 1.0E + 1.6H

The following four wind cases were also considered from ASCE7-05 Figure 6-9 shown below. Case 1 proved to be the most critical case after analyzing all combinations.




Figure 15: ASCE 7-05 Wind Cases

After analyzing the required load combinations using ETABS and checking the forces and deflections in the different load combinations, it is apparent that for both the N-S and the E-W directions, 0.9D + 1.6 W predominantly controls. This is expected due to the relatively low seismic location. It is also expected that this combination would control over load combination four, due to the fact that a smaller building weight would have less resistance to wind forces, making it more critical.

Consultant: Professor Parfitt 05/07/2010

Thesis Final Report

ETABS Model

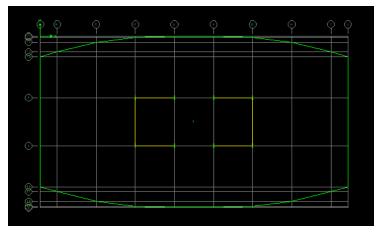


Figure 16: ETABS Lateral Model

A computer model of the structure was used to analyze the lateral system and the forces acting on the structure. ETABS, a computer modeling program from Computers & Structures, Inc. was used for the analysis. In this, only the lateral resisting elements needed to be modeled to gain an accurate representation of a building's performance under lateral loading.

All six braced frames were modeled, along with rigid floor diaphragms. The building's self weight was calculated by hand and applied to the diaphragm as an additional area mass. All load cases and combinations considered were manually added to the model. This model provided useful information with regard to force distributions and building drift that are used in the following section.

Consultant: Professor Parfitt 05/07/2010

Thesis Final Report

Distribution of Lateral Forces

The lateral system design, as well as the overall building shape and floor plans are fairly basic for this structure. The building is symmetrical in shape about its x and y axes. This results in a center of mass located directly in the center of the structure. Similarly, the lateral system is symmetrical as well, both in location and in stiffness of the frames. This creates a center of rigidity located at the building's center, at the same point as the center of mass. These two centrally located points result in negligible eccentricities caused by seismic and concentric wind forces, which eliminates overall building torsion due to these loadings. Building torsion was considered only for the eccentrically loaded wind cases, as well as the accidental moment caused by eccentric seismic forces.

Lateral loads were assumed to be distributed throughout the floor by way of a rigid floor diaphragm, causing the deflections at each point in each level to be the same due to the support of an infinitely rigid floor. This means that determining the relative stiffness of each frame must be done using the stiffness of each frame, rather than by tributary floor widths. The stiffer frames will resist more force than less stiff frames. This basic theory was used to determine the relative stiffness of each frame in the N-S and E-W directions.

In order to determine the relative stiffness of each frame, a 1000K load was applied to the top building level in each direction. Section cuts were used in ETABS to determine the shear forces in the columns at each frame. It was confirmed that the sum of all shears at every level was equal to the story shear, or 1000K. This confirmed that all resistive forces were accounted for on all levels. From these forces, the relative stiffnesses were determined for each frame by examining the percentage of the total 1000K that the frame resisted. This basic method was completed in both directions. The results can be found in the following tables:

Table 9: Resisting Forces (X/ N-S)					
Level	Frame 1	Frame 2	Frame 3	Frame 4	Total Force (K)
1	250.0	250.0	250.0	250.0	-1000
2	250.0	250.0	250.0	250.0	-1000
3	250.0	250.0	250.0	250.0	-1000
4	250.0	250.0	250.0	250.0	-1000
5	250.0	250.0	250.0	250.0	-1000
6	250.0	250.0	250.0	250.0	-1000
7	250.0	250.0	250.0	250.0	-1000

Consultant: Professor Parfitt 05/07/2010

Thesis Final Report

Table 10: Relative Stiffness (X/ N-S)					
Level	Frame 1	Frame 2	Frame 3	Frame 4	Total Percent
1	25.0	25.0	25.0	25.0	100
2	25.0	25.0	25.0	25.0	100
3	25.0	25.0	25.0	25.0	100
4	25.0	25.0	25.0	25.0	100
5	25.0	25.0	25.0	25.0	100
6	25.0	25.0	25.0	25.0	100
7	25.0	25.0	25.0	25.0	100

Table 11: Resisting Forces (Y/ E-W)					
Level	Frame 5	Frame 5 Frame 6 Misc Colum		Total Force (K)	
1	484.50	484.50	31.04	-1000	
2	493.37	493.37	13.28	-1000	
3	511.76	511.76	-23.48	-1000	
4	485.25	485.25	29.50	-1000	
5	513.46	513.46	-26.88	-1000	
6	492.11	492.11	15.78	-1000	
7	496.08	496.08	7.88	-1000	

Table 12: Relative Stiffness (Y/ E-W)					
Level	Frame 5	Frame 6	Misc Columns	Total Percent	
1	48.5	48.5	3.1	100	
2	49.3	49.3	1.3	100	
3	51.2	51.2	-2.3	100	
4	48.5	48.5	3.0	100	
5	51.3	51.3	-2.7	100	
6	49.2	49.2	1.6	100	
7	49.6	49.6	0.8	100	

It is clear that for the N-S direction, each of the braced frames takes 25% of the total load. In the E-W direction the two frames make up approximately 50% of the total load at each floor. These results were quite predictable. These load distributions were then used to determine the sizes of the braced frame braces in the next section.

Consultant: Professor Parfitt 05/07/2010

Thesis Final Report

Braced Frame Design

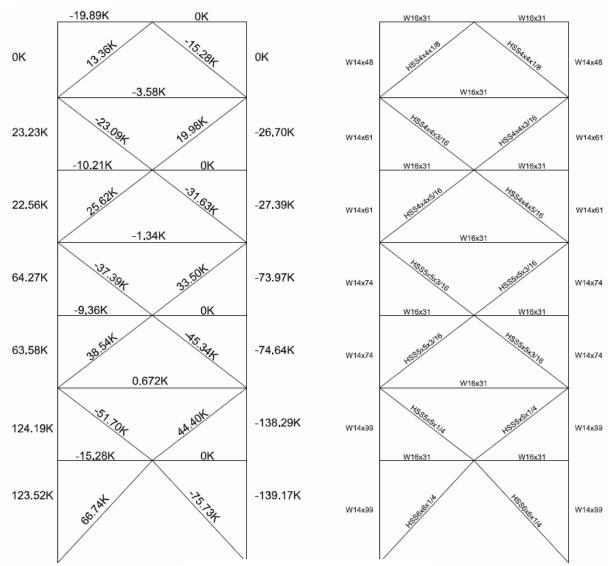


Figure 17: Typical N-S Braced Frame

After finding the relative stiffnesses of the frames, the critical load combination of 1.6W was applied directly to the frames to find the critical axial forces in the braces. SAP was used to perform this analysis. The axial forces due to this load are shown above, at left. After the braces were sized, the axial forces in the columns were considered along with the dead and live loads, to determine column sizes at the braces. These calculations are shown in more detail in the appendix. The final design of the braces in the N-S direction can be seen above, at right.

Consultant: Professor Parfitt 05/07/2010

Thesis Final Report

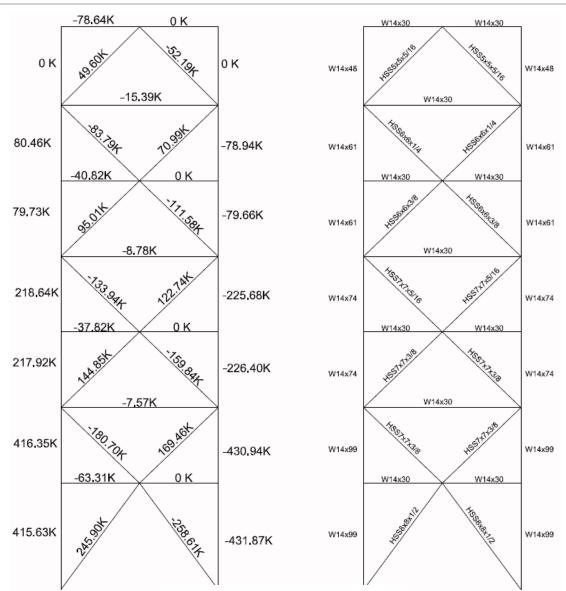


Figure 18: Typical E-W Braced Frame

The same method was used to determine the forces in the E-W direction braces as well. It is clear that the E-W direction braces will need to be much larger due to larger axial forces in the members. This makes sense because there are only two braces in the E-W direction, while there are four in the N-S direction.

When sizing the columns in the E-W direction, the actual sizes required ended up being slightly smaller than the final design shows. This is due to the fact that the E-W braces share columns with the N-S braces. Because of this, the larger N-S braced frame columns became the final size for the E-W direction as well. This can be seen in Appendix D. The final E-W direction design is show above.

Consultant: Professor Parfitt 05/07/2010

Thesis Final Report

Wind Drift

Wind forces were examined to determine if the overall building drift and the individual story drifts were acceptable. In general, drift should be limited as much as possible; however, a limit of 1/400th of the overall building height was used in this case. For this overall structure, the drift is limited to:

$$\Delta_{MAX} = (100.5' \text{ X } 12)/400 = 3.02''$$

After running the ETABS model for unfactored (serviceability consideration) wind forces in both directions, the following results were obtained:

Table 13: Wind Drift (X/ N-S)			
Level Story Drift (in)		Total Drift (in)	
1	0.3718	0.3718	
2	0.1853	0.5571	
3	0.1935	0.7505	
4	0.2033	0.9539	
5	0.1667	1.1205	
6	0.1905	1.3110	
7	0.1936	1.5046	

Table 14: Wind Drift (Y/ E-W)				
Level	Story Drift (in)	Total Drift (in)		
1	0.2918	0.2918		
2	0.3390	0.6308		
3	0.3127	0.9435		
4	0.3715	1.3150		
5	0.3356	1.6506		
6	0.3721	2.0227		
7	0.3260	2.3486		

It is clear that the E-W direction drift is larger than the N-S drift, which seems logical due to the larger wind force in that direction, as well as a smaller building width. From the data, it is clear that the maximum building drift in both directions is acceptable as it is less than the allowable value of 3.02".

Structural Option Potomac, MD

Consultant: Professor Parfitt 05/07/2010

Thesis Final Report

The individual story drift was also considered and compared against the allowable values shown in the table below:

Table 15: Allowable Story Drift		
Level Story Drift (in)		
1	0.570	
2	0.405	
3	0.405	
4	0.405	
5	0.405	
6	0.405	
7	0.420	

These values were calculated using L/400, where L is the individual story height. It is clear when comparing with the actual drift values, that the overall building drift, as well as the individual story drifts, are acceptable for wind.

Consultant: Professor Parfitt 05/07/2010

Thesis Final Report

Seismic Drift

Seismic forces were examined to determine if the overall building drift was acceptable. For this overall structure, based on ASCE7-05 Chapter 12, Table 12.12-1, the overall drift is limited to:

$$\Delta_{MAX} = 0.020 \text{ X } (100.5' \text{ X } 12) = 24.12''$$

After running the ETABS model for factored (strength consideration) seismic forces in both directions, the following results (including secondary effects) were obtained:

Table 16: Seismic Drift (X/ N-S)			
Level	Story Drift (in)	Total Drift (in)	
1	0.2523	0.2523	
2	0.1460	0.3983	
3	0.1609	0.5591	
4	0.1705	0.7296	
5	0.1367	0.8663	
6	0.1403	1.0066	
7	0.1046	1.1113	

Table 17: Seismic Drift (Y/ E-W)			
Level	Story Drift (in)	Total Drift (in)	
1	0.1195	0.1195	
2	0.1546	0.2741	
3	0.1499	0.4240	
4	0.1776	0.6016	
5	0.1565	0.7580	
6	0.1558	0.9139	
7	0.1050	1.0188	

These drift values were adjusted based equation 12.8-15 of ASCE 7-05:

$$\delta_x = \frac{C_d \, \delta_{xe}}{I}$$

This resulted in respective amplified drifts of 3.34" and 3.06" for the N-S and E-W directions. These amplified drifts were found using a C_d factor of 3 for steel systems not specifically designed for seismic resistance and an importance factor of 1.0. It is clear that these values will not exceed the allowable value for the structure.

Structural Option Potomac, MD

Consultant: Professor Parfitt 05/07/2010

Thesis Final Report

Torsion

Overall building torsion results from several scenarios. The largest and most common case of building torsion results from a center of mass that differs in location from the building's center of rigidity. This creates a case where the loads are applied at an eccentricity on the building. This eccentricity times the force results in a moment on the overall building. Torsion also can result from the accidental eccentricity caused by seismic forces as described in ASCE 7-05 Section 12.8.4.2. Additionally, Cases 2 and 4 from the previously considered wind cases can also result in an additional eccentricity causing torsion. In both of these wind cases, the eccentricity is equal to 15% of the building width.

As previously mentioned, due to this building's symmetrical geometric shape, as well as the symmetrical frame stiffnesses about the x and y axes, the center of mass and center of rigidity are both at the same location. This creates no torsion from eccentricity. In addition to this, it has been shown that seismic does not control and that Wind Case 1 is the controlling wind case. Taking all of this into account, it is clear that the overall torsion on the building due to these forces is negligible, resulting in negligible overall building torsion.

Overturning

Overturning issues can have an impact on a variety of building components, probably the most common of which is the building's foundations. Overturning occurs when the lateral forces on a building are not offset by the moment created by the building's self weight. This creates a scenario where uplift must be considered for the foundations. Foundations must utilize friction from the soil and self weight and are used in tension, rather than in compression.

Overturning moments can also have an effect on the columns in a building as well. Overall building moments are transferred through axial forces in the columns. These moments put some columns in compression, and others in tension. This is something that must be taken into account as well.

The following overturning moments were determined from taking the critical factored story shear from ETABS at each level and assuming that force acted at the floor level of each story. The height and force were used to determine the moments, which were summed to determine the overturning moment in that direction.

Consultant: Professor Parfitt 05/07/2010

Tab	Table 18: Seismic Overturning Moment (X/ N-S)				
Level	Height	Story Shear (K)	Overturning Moment (ft - k)		
1	19	222	4218		
2	32.5	211	6858		
3	46	197	9062		
4	59.5	173	10294		
5	73	137	10001		
6	86.5	86	7439		
7	100.5	21	2111		
		Total Moment:	49982		

Table 19: Seismic Overturning Moment (Y/ E-W)			
Level	Height	Story Shear (K)	Overturning Moment (ft - k)
1	19	222	4218
2	32.5	211	6858
3	46	197	9062
4	59.5	173	10294
5	73	137	10001
6	86.5	86	7439
7	100.5	21	2111
		Total Moment:	49982

Structural Option Potomac, MD

Consultant: Professor Parfitt 05/07/2010

Thesis Final Report

Tal	Table 20: Wind Overturning Moment (X / N-S)				
Level	Height	Story Shear (K)	Overturning Moment (ft - k)		
1	19	336.4	6391		
2	32.5	275.3	8946		
3	46	240.1	11047		
4	59.5	202.7	12061		
5	73	163.4	11927		
6	86.5	122.6	10607		
7	100.5	79.6	7998		
		Total Moment:	68977		

Ta	Table 21: Wind Overturning Moment (Y/ E-W)			
Level	Height	Story Shear (K)	Overturning Moment (ft - k)	
1	19	677.2	12866	
2	32.5	550.7	17899	
3	46	479.0	22034	
4	59.5	403.1	23981	
5	73	324.3	23677	
6	86.5	242.8	21000	
7	100.5	1 <i>57</i> .3	15804	
		Total Moment:	137262	

After calculation of the moment resulting from the building's self weight, it has been determined that overall building overturning will not occur. This was the case despite significantly reducing the building's weight in the redesign. This expectation was confirmed by the dead load moments of 895615 ft-k for the N-S direction and 510350 ft-k for the E-W directions. These moment calculations can be seen in more detail in Appendix D.

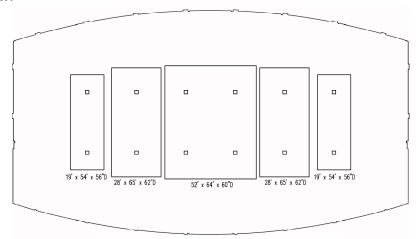
Although overall building overturning does not occur, there are several areas of the structure that may experience uplift. Uplift will likely occur at the base of the columns of the E-W direction braced frames. This tension force must be considered when designing the connection at the base of the brace frame columns. This force is relatively small, and is cancelled out by the gravity load of the parking levels. This prevents the uplift from occurring in any of the structure's foundations. See Appendix D for calculations.

Consultant: Professor Parfitt 05/07/2010

Thesis Final Report

Summary of Lateral Analysis

After analyzing the lateral loads from wind and seismic forces using the computer model which were confirmed by hand calculations, the following conclusions were determined:


- The primary controlling load case from ASCE7-05 was 0.9D + 1.6W.
- The controlling wind case was Wind Case 1.
- The center of mass and center of rigidity were both found to be at the geometric center of the structure.
- Overall building torsion was negligible.
- Overall building drift and story drift were found to be well within limitations.
- Overturning moment was found to not cause building overturning. Uplift will
 occur at the base of E-W frames, but not at any foundations.

Consultant: Professor Parfitt 05/07/2010

Thesis Final Report

Foundation Redesign

Due to the large self-weight of the original structure, large foundations were required to transfer the loads to the soil. In this analysis, five key mat foundations were redesigned to accommodate the reduced loads from the steel structure. The original design is shown below:

Figure 19: Original Foundations

After recalculating the loads at the base of the structure, it was determined that a series of $17' \times 17'$ (and 34'' Deep U.N.O.) square footings would be adequate to carry the required loading. Calculations are available in Appendix A. The redesign is available below:

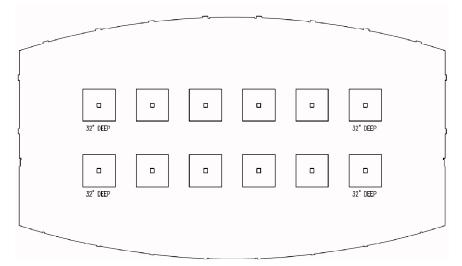


Figure 20: Redesign Foundations

All calculations are available in the appendix. The effects of this significant reduction in foundation size are explained in the Cost/Schedule section of this report.

Consultant: Professor Parfitt 05/07/2010

Thesis Final Report

Architecture Study

Using concrete moment frames in the original design of the structure was quite advantageous with regards to space planning. Because the columns and beams were heavily relied on to resist lateral forces, planning around shear walls and braced frames was not required. This allowed for uninterrupted open space throughout the floor plan.

The modification of the gravity system to a steel system required consideration of the new lateral system as well. It was determined after analyzing the bay size and floor plan layout, that the use of braced frames in both directions would be the most beneficial solution. This, however, created problems with maintaining the integrity of the tenant spaces that were to be leased. Any intrusion into the open space would create a less desirable and less profitable situation for the owner.

Because of this, the placement of the braced frames was a careful consideration when designing the lateral system. Ordinarily, placement of braced frames at a large eccentricity compared to the center of mass is desirable, as the frame would be more beneficial in resisting overall torsion of the structure. In this case though, this was not a factor due to the lack of torsion on the structure. Therefore, the placement of the frames near the core was valid. Placing the frames near the core was preferable, and allowed them to be placed inside of walls, where they would not intrude upon the tenant spaces.

The locations of the braced frames are shown in red on the following diagram, detailing how the frames interact with the usable spaces on the floor plan.

Consultant: Professor Parfitt 05/07/2010

Thesis Final Report

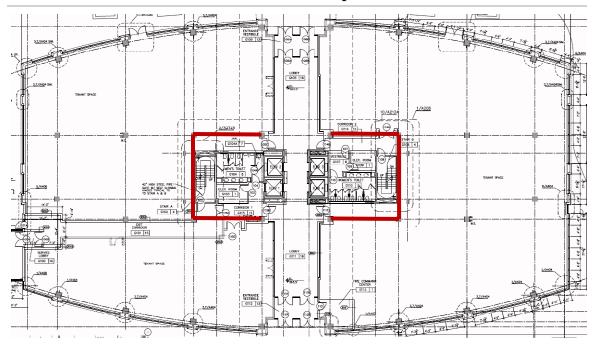
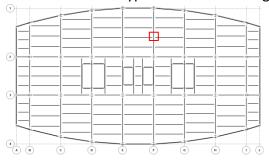
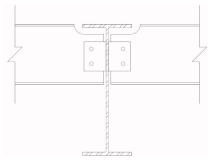


Figure 21: Braced Frame Locations

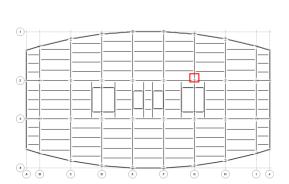
It is clear when examining the existing floor layout, that the location of the braces will have almost a negligible impact on the existing plan. The two braces running in the E-W direction fall directly along the existing exterior wall of the egress stair. The four frames in the N-S direction will have a slight impact on the placement of the existing doors. While these frames do lie along a planned wall, the placement of the door in this wall may have to be shifted to accommodate for the brace locations at that floor. This will have to be considered; however, it is anticipated that these changes result in negligible changes to the architectural floor plan for the structure.

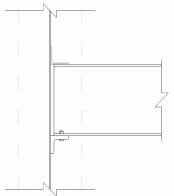
As was mentioned in a previous section of this analysis, the floor depth for the steel redesign was larger than the original floor depth. In order to maintain the same ceiling height and MEP spaces, this change in floor depth will result in a change in the overall height of the structure. As was shown previously, this change in building height will be roughly seven feet. It will be shown later in this report that this height increase could possibly be reduced beyond what has been shown previously. Regardless, it is clear that some increase in overall height would likely occur. This would result in a need for more square footage of building envelope, requiring slight architectural considerations as well as cost considerations.

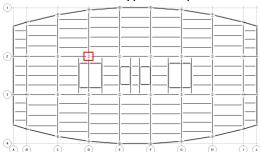

It is anticipated that, despite the increase in height, the same architectural goals could be achieved with the structural envelope. The issue of cost would require consideration, which is investigated in the cost and schedule analysis of this report.

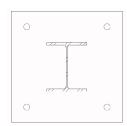

Consultant: Professor Parfitt 05/07/2010

Thesis Final Report


MAE Topic: Connection Design


A typical beam-to-girder shear tab connection was designed for the location shown below. This was a typical scenario throughout the structure.




An unstiffened seat connection was designed for the connection of a girder to a column web. The location can be seen on the plan below. This would likely be a common connection in this scenario throughout the structure.

A base plate was designed for the location shown below. This base plate is located under the corner of the braced frames (connecting to the parking levels), and is the most critical of its type. This plate will also require anchorage design for uplift.

All calculations and details for connections are shown in detail in Appendix E.

Structural Option Potomac, MD

Consultant: Professor Parfitt 05/07/2010

Thesis Final Report

Summary of Building Design

The redesign of the structure began with the idea of reducing the self-weight of the structure, which effectively requires reduced sizes in the members required to carry the gravity load. That includes mainly columns and foundations.

The gravity design began with choosing a slab thickness that was able to provide an adequate two hour fire barrier without using additional fireproofing sprayed on the decking, as that would not be cost efficient. Metal decking and slab thickness were considered to resist the required gravity loads from ASCE 7-05. Beams were laid out to maintain a ten-foot minimum span (in order to avoid the need for shoring), and minimize the number of beams required.

After laying out the slab and beams, the gravity columns were considered. In an effort to maintain a comparable structure to the original design, the same column grid was used in the redesign. All gravity columns were designed.

The cantilevers at the North and South sides of the structure presented a unique design challenge to the structure. Four beams were moment connected to columns and cantilevered out 12 feet to carry the cantilever loads back to the column. Moment connections were used on the interior of the columns as well, in order to balance most of the moment from the cantilever. This effectively reduced the amount of moment that the columns alone were required to carry.

The redesign of the structure also required the consideration of the lateral force resisting system. In this case, a series of braced frames were used to resist the lateral forces in both directions. The maximum design forces were considered in each column and brace, along with the gravity loads in the columns. These forces were combined using a variety of different load combinations. The members were then sized using the critical case. After the sizing of all the members, all of the load combinations and wind scenarios were analyzed on the structure, and overall building drifts were found to be within the allowable limits.

After completing the redesign of the superstructure, the foundations were analyzed with the reduced gravity loads. Because of the bracing due to the parking levels, it is clear that the moment transferred down to the foundations is negligible. The loads from the superstructure, in addition to the loads from the concrete parking levels were used to design new foundations. Smaller, 17' x 17' square foundations were found to carry the loads to the soil. These foundations took the place of the much larger mat foundations that were required in the original design.

Structural Option Potomac, MD

Consultant: Professor Parfitt 05/07/2010

Thesis Final Report

Cost/ Schedule Analysis Study

A detailed cost estimate was completed for the original post-tensioned structure. All rebar, formwork, tendons, shoring/reshoring, and concrete were considered in the analysis.

The cost estimate for the redesign consisted of all beams, columns, fireproofing (applied to all beams and columns), studs, metal decking, welded wire fabric, lightweight concrete, and the cost of foundations. A 3% adjustment factor was used to account for base plates, and a 10% adjustment factor was used to account for connections and column splices, as specified by R.S. Means Unit Price Estimating Methods, 4th Edition.

The cost savings values considered in this report were solely a factor of the material, labor and equipment costs. Although the general conditions were calculated for this report, the \$82,000 per month general conditions cost was not taken into account in the project savings. Although the structure most likely falls on the critical path, it was assumed for this report that the end date of the project remained unchanged, despite the shortened schedule for the structure alone.

Schedule durations are an important consideration for choosing an effective structural system. The structure will likely require a large portion of the construction time for the project, and needs to be considered accordingly. Summaries of these schedules are shown in Appendix E of this report. The results showed that the steel structure could be completed roughly 13 months faster than the original design. This makes sense due to the quick erection of steel members, the reduced foundation sizes, and the time required for concrete forming, reinforcing, and curing in the original design. While the potential cost savings of this reduction were not considered, it is clear that additional time built into the schedule would occur, at the very least.

Overall results of the cost and schedule analysis are available below:

Structural Option Potomac, MD

Consultant: Professor Parfitt 05/07/2010

Thesis Final Report

Table 22: Original Structure					
	Mat'l	Labor	Equipment	Total	COST/SF
Foundations	\$272,327	\$59,403	\$250	\$331,980	\$1.90
Superstructure	\$2,532,939	\$1,594,087	\$48,370	\$4,1 <i>75</i> ,396	\$23.86
Total Incl. Addition	al Costs				\$27.83
		Steel Redes	sign		
	Mat'l	Labor	Equipment	Total	COST/SF
Foundations	\$54,082	\$1 <i>7</i> ,076	\$1,874	\$73,033	\$0.42
Superstructure	\$2,669,627	\$290,079	\$11 <i>4,</i> 563	\$3,074,269	\$1 <i>7.</i> 57
Total Incl. Additional Costs \$19.43			\$10.43		

By analyzing the results in Table 22, it is clear that the proposed system will result in significant cost savings over the original design. However, these numbers do not take into account the increased building envelope costs due to the building height increase that will be required. Assuming a building envelope cost of \$50 per SF and a seven foot increase in height, the cost increase would be \$224,000 due to the extra envelope costs.

This would result in a steel cost increase of \$1.26 per SF, resulting in a final steel cost of around \$20.69 per SF of floor area. This results in slightly more than a 25% cost reduction for the overall structural system for the project.

Structural Option Potomac, MD

Consultant: Professor Parfitt 05/07/2010

Thesis Final Report

Conclusion

The 20" total floor depth of the original post-tensioned structure was one large advantage of the original system. Changing to a steel system resulted in an increase of the floor depth, which resulted in increasing the overall building height in order to maintain the same ceiling heights as well as MEP spaces. In this analysis, a 27" deep beam was taken to be the critical member, resulting in a new floor depth of 32.5". This increase in the height of the structure resulted in increased costs for the structure and also for the building enclosure.

To go back and reanalyze the critical floor depth, it is obvious that further improvements could take place. Only ten beams per level exceed 21" deep. It would be useful to constrain these beam depths in order to decrease the overall floor depth. The deepest of these beams (W27x84) could be changed to a W21x93. If this constraint was applied to all ten beams, the floor depth would become only six inches deeper than the original post-tensioned design, not 12" as used in the analysis. This would result in a building height increase of only 3.5' rather that seven feet; further reducing lateral loading and the square footage of building enclosure required. These benefits would likely outweigh the slightly higher cost of the shallower, heavier beams on each floor.

One last notion that could improve the overall design would be a closer look at the cantilever situation at both ends of the structure. For this analysis, the cantilever distance and the column grid were kept the same. In an ideal redesign, more thought would have been put into planning the balancing moments at this location. Due to these constraints, the cantilever side had a moment of 575 ft-k, while the interior connection of each column only had a moment of 376 ft-k. This left an unbalanced moment of 199 ft-k at each floor. This left a significant moment for the columns to maintain, especially at the lower levels of the structure, resulting in very large column sizes.

In an ideal redesign, the cantilever distance would be smaller to reduce the exterior moment, or the interior span would be larger to increase the moment at the interior of the column. More effective planning at balancing these moments could have resulted in significantly lesser moments taken by the columns. This would have resulted in much smaller column sizes at these locations and even further cost savings for the project.

Based on the analysis performed on the structure, it appears that the proposed redesign will have the benefits that were initially expected. By changing to a steel composite system, the self-weight of the structure is greatly reduced, and the member sizes can be reduced due to the lesser loads. Large cost savings result, due to the material, labor, and equipment costs associated with the structure. For this report, general conditions

Park Potomac Office Building "E"

Structural Option Potomac, MD

Consultant: Professor Parfitt 05/07/2010

Thesis Final Report

savings were not considered; however, further savings could potentially occur depending upon the exact ramifications these changes would have on the schedule duration. Overall, it appears that the proposed redesign could have been a viable and beneficial alternative for this project.

Consultant: Professor Parfitt 05/07/2010

Thesis Final Report

Resources

ACI 318-08: Building Code Requirements for Structural Concrete and Commentary.

AISC Steel Construction Manual, Thirteenth Edition.

ASCE 7-05: Minimum Design Loads for Buildings and Other Structures.

R.S. Means Building Construction Data, 2009.

Unified Design of Steel Structures. Geschwinder, L.

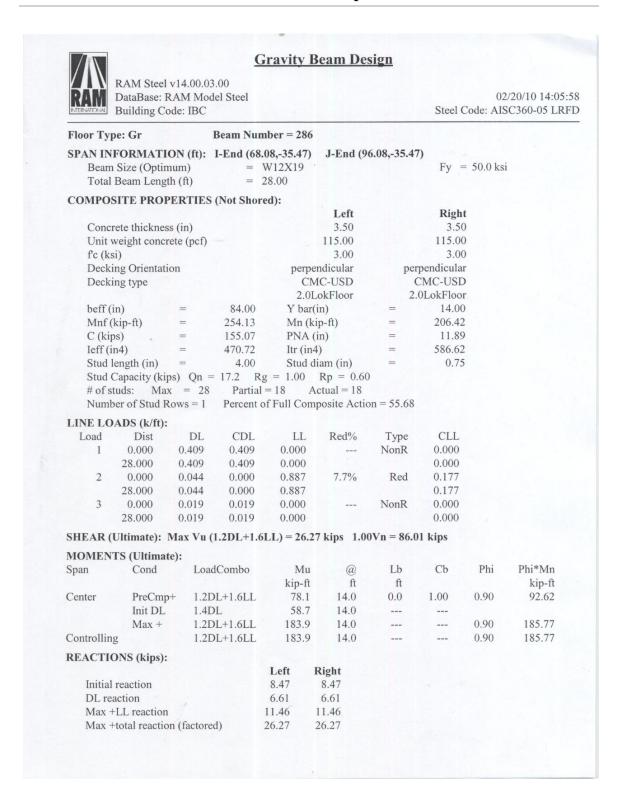
Park Potomac C	Office E	Building	"E"
----------------	----------	----------	-----

Structural Option Potomac, MD

Consultant: Professor Parfitt 05/07/2010

Thesis Final Report

Appendix A: Gravity Design


Structural Option

Potomac, MD

Consultant: Professor Parfitt 05/07/2010

		Gravity Checl	<u>cs</u>
	KKLE WAGNER	THESIS	GRAVITY CHECK
	VERIFY BEAM	286	
RES RES RES	28'	2	D= 43 psf +5psf =48psf LL red = 92.7 psf
ETS — 5 SQUARES ETS — 5 SQUARES ETS — 5 SQUARES ETS — FILLER		205.9 psf	> W) = 1.80 K/E+
5 — 50 SHEETS 6 — 100 SHEETS 7 — 200 SHEETS 7 — 200 SHEETS			-> WG = 1.824/FE
3-0235- 3-0236- 3-0237- 3-0137		24/6+(28')/2 = 2	
COMET		3 = 1.82(28)2 =	
	Y BAR = IL		14=3,7" - 42
	TABLE	3-19 = WIZXIQ	15 ADEQUATE
-0			
		,	

Consultant: Professor Parfitt 05/07/2010

Structural Option Potomac, MD

Consultant: Professor Parfitt 05/07/2010

RAM Steel v14.00.0 DataBase: RAM Mo Building Code: IBC	03.00 odel Steel	y Beam D	<u>esign</u>	Steel Co	02/20/10 de: AISC360	Page 2/2) 14:05:58 -05 LRFD
DEFLECTIONS: (Camber = Initial load (in) Live load (in) Post Comp load (in) Net Total load (in)	at 14.00 at 14.00 at 14.00) ft =) ft =	-1.570 -0.829 -0.874 -1.194	L/D = L/D = L/D = L/D =	214 405 384 281	

Consultant: Professor Parfitt 05/07/2010

	Gravity Column Checks	
	KYLE WAGNER THESIS FINAL COLUMN CHECK	1
	SPOT CHECKS -> COLUMNS	
	COLUMN AT GRID H-Z, LEVEL 1 (INTERIOR COL)	
5 SQUARES 5 SQUARES FILLER	Po = 910 K	
- 5 SC - 5 SC - FILL	USE AISC TABLE 4-1: 19' UNBRACED LENGTH	
SHEETS SHEETS SHEETS	USE WIZXIDG PA=946K > 910K 1. BRAY/	
100 - 200	WIZXID6 V	
3-0236 3-0237 3-0137	COLUMN AT GRID F-1, LEVEL 3 (EDGE COL)	
COMET	PU = 413.4 K	
0	Mux = 13.1 IK Muy = NEGLIGIBLE	
	CHECK WIZX53 [TABLE 6-1]	
	P=1.91 x10-3	
	$b_x = 3.31 \times 10^{-3}$	
	Pro = 0.790 > 0.2 .: Earl HI-1A	
	PPU+ bx MVX = 0.790 + (3.31 x103)(231) = 0.87 61.0	
	". OKAY	
	WIZX53 ADEQUATE	

Structural Option Potomac, MD

Consultant: Professor Parfitt 05/07/2010

Thesis Final Report

Gravity Column Design

RAM Steel v14.00.03.00 DataBase: Takeoff Building Code: IBC

03/17/10 18:29:32 Steel Code: AISC360-05 LRFD

Page 7/7

Story level Story 2, Column Line H-2

Fy (ksi) = 50.00 Orientation (deg.) = 90.0 Column Size = W12X106

INPUT DESIGN PARAMETERS:

Lu (ft)		X-Axis 19.00	Y-Axis 19.00
К		1	1
Braced Against Joint Translatio	on	Yes	Yes
Column Eccentricity (in)	Top	8.95	8.60
	Bottom	0.00	0.00

CONTROLLING COLUMN LOADS - Load Case 10:

		Dead	Live	Roof
Axial (kip)		395.19	273.83	0.00
Moments	Top Mx (kip-ft)	1.74	1.21	0.00
	My (kip-ft)	-0.69	-1.95	0.00
	Bot Mx (kip-ft)	0.00	0.00	0.00
	My (kip-ft)	0.00	0.00	0.00

Single curvature about X-Axis Single curvature about Y-Axis

CALCULATED PARAMETERS: (1.2DL + 1.6LL + 0.5RF)

Pu (kip)	=	912.35	0.90*Pn (kip)	=	946.81
Mux (kip-ft)	=	4.02	0.90*Mnx (kip-ft)	=	615.00
Muy (kip-ft)	=	5.28	0.90*Mny (kip-ft)	=	281.63
Rm	=	1.00			
Cbx	=	1.67			
Cmx	=	0.60	Cmy	=	0.60
Pex (kip)	=	5137.00	Pey (kip)	=	1657.27
B1x	=	1.00	B1y	=	1.33

INTERACTION EQUATION

Pu/0.90*Pn = 0.964

Eq H1-1a: 0.964 + 0.006 + 0.017 = 0.986

Structural Option Potomac, MD

Consultant: Professor Parfitt 05/07/2010

Thesis Final Report

Gravity Column Design

RAM Steel v14.00.03.00 DataBase: Takeoff Building Code: IBC

03/17/10 18:32:34 Steel Code: AISC360-05 LRFD

Page 5/7

Story level Story 4, Column Line F-1

Fy (ksi) = 50.00 Column Size = W12X53 Orientation (deg.) = 90.0

INPUT DESIGN PARAMETERS:

	X-Axis	Y-Axis
Lu (ft)	13.50	13.50
K	1	1
Braced Against Joint Translation	Yes	Yes
Column Eccentricity (in) Top	8.55	7.50
Bottom	8.55	7.50

CONTROLLING COLUMN LOADS - Load Case 4:

		Deau	Live	1,001
Axial (kip)		179.47	125.11	0.00
Moments	Top Mx (kip-ft)	-10.01	-7.02	0.00
	My (kip-ft)		-0.06	0.00
	Bot Mx (kip-ft)		-7.02	0.00
	My (kin-ft)	-0.09	-0.86	0.00

Reverse curvature about X-Axis Reverse curvature about Y-Axis

CALCULATED PARAMETERS: (1.2DL + 1.6LL + 0.5RF)

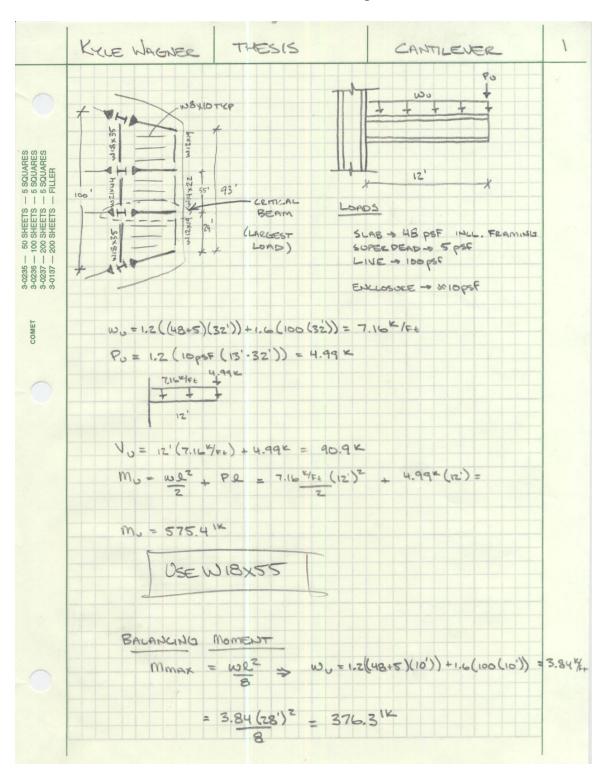
ALCULATED F	PARAM	ETERS: (1.2D	L + 1.6LL + 0.5RF)		
Pu (kip)	=	415.55	0.90*Pn (kip)	=	513.61
Mux (kip-ft)	=	23.25	0.90*Mnx (kip-ft)	=	292.13
Muy (kip-ft)	=	1.49	0.90*Mny (kip-ft)	=	109.13
Rm	=	1.00			
Cbx	=	2.27			
Cmx	=	0.20	Cmy	=	0.54
Pex (kip)	=	4635.07	Pey (kip)	-	1044.80
B1x	=	1.00	B1v	=	1.00

INTERACTION EQUATION

Pu/0.90*Pn = 0.809

Eq H1-1a: 0.809 + 0.071 + 0.012 = 0.892

Structural Option


Potomac, MD

Consultant: Professor Parfitt

05/07/2010

Thesis Final Report

Cantilever Beam Design

Structural Option Potomac, MD

Consultant: Professor Parfitt 05/07/2010

	KILE WAG	NER THE	SIS	CANTILEVER	
	Cocumn	LOADS			
					-
		0=34.5 K	Pu=1.20+1.6		
S S	1	L= 23.62K	= 79.2 ×		
- 5 SQUARES - 5 SQUARES - FILLER	6	D=69.0K	Pu=178.93 4		
SHEETS - SHEETS -	(5)	D = 163.56 6 = 82.63	Pu= 256, 49*	4	
100	4	D=139.24 L=105.224	Pu= 334.23×		
3-0236 3-0237 3-0137		D= 172.9K			
	3	L= 131.53K	Pu=417.9 K		-
COMET		D= 207.73K			
00	6	L=157.83K	Pu=501.8K		
	0	D= 243.19K	Pu= 572.2K		-
		L= 175.25 K			
	H				
					-
			TO TO STRUCT	ure at every	
	FLOOR	LEVEL, PREV	ENTING DEF	ELECTIONS.	
	LEVEL 7				
					-
			=79.7 K	Tex WIH:	
		ve P.	, = 79.2 K	Tex WIY:	
	376 VKA 77 575	, e Pe	= 79.2 K	m=24 _ 24 _ 1,714	
	376 WEK 78 575	NE PL			
	376 TV 575		v= 1991K	m=24 = 24 = 1.714	
	376 WEK 78 575			m=24 = 24 = 1.714	
	376 TV 575	L Pe	5= 1991K	M=24 = 24 = 1.714 199) = 420.3 K	
	376 TV 575		5= 1991K	M=24 = 24 = 1.714 199) = 420.3 K	
	376 TV 575	L Pe	5= 1991K	M=24 = 24 = 1.714 199) = 420.3 K	

Structural Option

Potomac, MD

Consultant: Professor Parfitt

05/07/2010

	KYLE WAGNER	THESIS	CANTILEVER	3
	WILLKOI			
	P=1.67x1	0-3		
5 SQUARES 5 SQUARES 5 SQUARES FILLER	PP6=1	.67×10-3 (79.2)=0.1	32	
0000	TEX W14x48	[TABLE 6.	-13	
50 SHEET 100 SHEET 200 SHEET 200 SHEET	p= 2.77			
3-0235 — { 3-0236 — 10 3-0237 — 20 3-0137 — 20	bx=3.73	5 x 10 °		
0000	PPU = 0	0.219 > 0.2 . E	2 HI-IA	
COMET	PPU + 6	x Mux = 0.219 + (3.	73×103)(199)=0.966	10
		SKAY /		
	USE WIHXHS	3 (
	LEVELO			
	(5) Jaqik	Pu= 178.9 × Mu= 398 ×	Tex WILL	
	376 39814	Peff = 178.9 +1:	714 (398) = 8614	
	SABIR	TRY WHY8	2 Pn=774x	
	9	[TABLE	4-1]	
		P = 1.29 × 10-5		
		px=1.86×10.	TABLE 6-1]	
	pPu = 0,23	>0.2 : EQH HI	-1A	
	PPU + bx M	10x = 6.23 + (1.8	6×10-3) (398) = 0.9741	.0
	2.0	HAY USE W	114×82	-

Structural Option Potomac, MD

Consultant: Professor Parfitt 05/07/2010

	KKLE WAGNER	THESIS	CANTILEVER	4
	LEVEL S			
		HE 199 IK UNBALANGE DOWN THE BOLL		
5 SQUARES 5 SQUARES FILLER	$M_{o} = 3$	981× +1991× = 5971×		
- 5 SQU - 5 SQU - FILLEI	Pu= 2	56.5K		
SHEETS - SHEETS - SHEETS -	TRY W			
100 SH 200 SH 200 SH	Peff =	= 256.5 + 1.714 (597)	= 1279	
3-0236 — 3-0237 — 3-0137 —	- TABLE	4-1] TRY WILK YOU	\$ Pn=1240x	
	TABLE	6-1 P= 0.804 x10	3	
COMET		bx=1.25 x10	-3	
	PP0=1	5.206 > 6.2 : EQN	S 41-1A	
	P0+1	0x Mux =1.0 = 0.201	0+ (1.25 × 10-3) (597) = 0.9	5 41.0
		ORAN / DSE WIHX		
	LEVEL 4			
	Mu = 59-	71×+1991× = 7961×		
	TRE WI	ч		
	Peff =	334.3 + 1.714 (796)	= 1698 K	
	[TABLE 4	-1] TRY WIYXIUS	\$Pn=1690K	
	TABLE	0-1 P=0.593×10-3		
		px = 0.915 x10-3		
	PP0 = 0.1	98 4 0.2 . EQN	H1-1B	

Structural Option

Potomac, MD

Consultant: Professor Parfitt

05/07/2010

	KYLE WAGNER	THESIS	CANTILEVER
	$\frac{P_c}{2P_c} + \left(\frac{M_{c}}{M_{c}}\right)$	+ mry) = 1.0	S [Ean HI-IP]
– 5 SQUARES – 5 SQUARES – FILLER	334.3K +	7961K £1.0	
— 200 SHEETS - 200		5-7.68 (13-14.1)	
3-0237	334.3k + Z(1690)	796 = 6.9	15 6 1.0 % OKAY /
COMET	USE WILL	1×145	
	LEVEL 3		
	MU=7961×+1	9914 = 99514	
	USE WILL		
	多是是表示。	x + 1.714 (995) = TRX WILL X176	
	TOBIE (-1:	P= 0.488 x15-3 bx = 0.741 x10-3	
	PPU = 6.2	64 >.2 /. USE	EQN HI-IA
		USE W	41415-3)(995) = 0.9461.0
		4	

Structural Option Potomac, MD

Consultant: Professor Parfitt 05/07/2010

Thesis Final Report

	KYLE WAGNER	THESIS	CANTILEVER	6
3-0236 — 60 SHEETS — 5 SQUARES 3-0236 — 100 SHEETS — 5 SQUARES 3-0237 — 200 SHEETS — 5 SQUARES 3-0137 — 200 SHEETS — FILLER	LEVEL 2			
	Pu = 502k	19 = 119414		
	USE WI4	+10714 (1194) = 7	548 K	
		TRY WIYXZII		
	TABLE 6-1:	P= 0.406 × 10-3		
8 8 8 8		bx = 0.608 x10	3	
COMET		104 > 0.2 EQ		
		Nox = 0.204 + (0	608×10-3)(1194) =0.93 41	.0
	MU = 1194 +19 PU = 572K	79 = 13931K		
	USE WILL			
	Perr = 57Z	× + 1.714 (1893) =	2959.6×	
	TABLE 4-1	ter w14x257	\$Pn=2720 K FOR 191	
	TABLE 6-1:	P=0.367 x10	3	
		bx=0.497 x10		
	PPU=0	.209 >0.2 i. H	1-1A	
			×10-3)(1393) = 0.90 £1.0	
	OVAY /	[USE 14	127	

Note: Final column line design shown below in gravity column summary.

Structural Option Potomac, MD

Consultant: Professor Parfitt 05/07/2010

Thesis Final Report

Gravity Column Summary

Gravity Column Design Summary

RAM Steel v14.00.03.00 DataBase: RAM Model Steel Building Code: IBC

taBase: RAM Model Steel 03/17/10 00:04:48 ilding Code: IBC Steel Code: AISC360-05 LRFD

Column Line 40.08ft-116.67ft										
Level	Pu	Mux	Muy	LC Interaction Eq.	Angle	Fy	Size			
Main Roof	81.2	48.2	3.3	10 0.51 Eq (H1-1a)	90.0	50	W12X40			
Story 7	154.5	22.2	1.4	4 0.60 Eq (H1-1a)	90.0	50	W12X40			
Story 6	220.9	20.8	1.3	4 0.80 Eq (H1-1a)	90.0	50	W12X40			
Story 5	286.1	20.5	1.2	4 0.80 Eq (H1-1a)	90.0	50	W12X50			
Story 4	349.6	20.2	2.2	10 0.97 Eq (H1-1a)	90.0	50	W12X50			
Story 3	423.4	23.5	1.8	5 0.68 Eq (H1-1a)	90.0	50	W12X65			
Story 2	491.8	16.7	1.6	10 0.92 Eq (H1-1a)	90.0	50	W12X65			
Column Line C-3										
Level	Pu	Mux	Muy	LC Interaction Eq.	Angle	Fy	Size			
Main Roof	136.3	13.3	8.6	6 0.62 Eq (H1-1a)	90.0	50	W12X40			
Story 7	267.0	11.9	4.3	3 0.59 Eq (H1-1a)	90.0	50	W12X53			
Story 6	392.0	11.4	4.1	3 0.83 Eq (H1-1a)	90.0	50	W12X53			
Story 5	522.9	11.4	4.7	3 0.81 Eq (H1-1a)	90.0	50	W12X65			
Story 4	653.8	11.4	4.7	3 0.99 Eq (H1-1a)	90.0	50	W12X65			
Story 3	785.4	14.0	5.5	3 0.72 Eq (H1-1a)	90.0	50	W12X106			
Story 2	909.5	3.9	5.2	6 0.98 Eq (H1-1a)	90.0	50	W12X106			
Column Line C-2										
Level	Pu	Mux	Muy	LC Interaction Eq.	Angle	Fy	Size			
Main Roof	136.3	13.3	8.6	7 0.62 Eq (H1-1a)	90.0	50	W12X40			
Story 7	267.0	11.9	4.3	2 0.59 Eq (H1-1a)	90.0	50	W12X53			
Story 6	392.0	11.4	4.1	2 0.83 Eq (H1-1a)	90.0	50	W12X53			
Story 5	522.9	11.4	4.7	2 0.81 Eq (H1-1a)	90.0	50	W12X65			
Story 4	653.8	11.4	4.7	2 0.99 Eq (H1-1a)	90.0	50	W12X65			
Story 3	785.4	14.0	5.5	2 0.72 Eq (H1-1a)	90.0	50	W12X106			
Story 2	909.5	3.9	5.2	6 0.98 Eq (H1-1a)	90.0	50	W12X106			
Column Line 40.08ft	6.50ft									
Level	Pu	Mux	Muy		Angle	Fy	Size			
Main Roof	81.2	48.2	3.3	10 0.51 Eq (H1-1a)	90.0	50	W12X40			
Story 7	154.5	22.2	1.4	4 0.60 Eq (H1-1a)	90.0	50	W12X40			
Story 6	220.9	20.8	1.3	4 0.80 Eq (H1-1a)	90.0	50	W12X40			
Story 5	286.1	20.5	1.2	4 0.80 Eq (H1-1a)	90.0	50	W12X50			
Story 4	349.6	20.2	2.2	10 0.97 Eq (H1-1a)	90.0	50	W12X50			
Story 3	423.4	23.5	1.8	4 0.68 Eq (H1-1a)	90.0	50	W12X65			
Story 2	491.8	16.7	1.6	10 0.92 Eq (H1-1a)	90.0	50	W12X65			
Column Line 68.08ft	121.00ft									
Level	Pu	Mux	Muy	LC Interaction Eq.	Angle	Fy	Size			
Main Roof	88.5	46.2	3.0	6 0.68 Eq (H1-1a)	90.0	50	W10X33			
Story 7	170.0	21.6	1.2	2 0.66 Eq (H1-1a)	90.0	50	W10X39			

Consultant: Professor Parfitt 05/07/2010

Gravity Column Design Summary								
RAM Steel v1	4.00.03.00						Page 2/4	
RAM DataBase: RA							03/17/10 00:04:48	
Building Code: IBC Steel Code: AISC360-05 LRF								
Story 6	243.6	20.3	1.3	2 0.89 Eq (H1-1a)	90.0	50	W10X39	
Story 5	315.9	19.8	1.2	2 0.74 Eq (H1-1a)	90.0	50	W10X49	
Story 4	393.3	19.7	1.2	2 0.90 Eq (H1-1a)	90.0	50	W10X49	
Story 3	472.5	24.0	1.5	2 0.68 Eq (H1-1a)	90.0	50	W10X77	
Story 2	548.6	17.1	1.8	6 0.99 Eq (H1-1a)	90.0	50	W10X77	
Column Line 68.08ft2	.17ft							
Level	Pu	Mux	Muy	LC Interaction Eq.	Angle	Fy	Size	
Main Roof	88.5	46.2	3.0	6 0.68 Eq (H1-1a)	90.0	50	W10X33	
Story 7	170.0	21.6	1.2	2 0.66 Eq (H1-1a)	90.0	50	W10X39	
Story 6	243.6	20.3	1.3	2 0.89 Eq (H1-1a)	90.0	50	W10X39	
Story 5	315.9	19.8	1.2	2 0.74 Eq (H1-1a)	90.0	50	W10X49	
Story 4	393.3	19.7	1.2	2 0.90 Eq (H1-1a)	90.0	50	W10X49	
Story 3	472.5	24.0	1.5	3 0.68 Eq (H1-1a)	90.0	50	W10X77	
Story 2	548.6	17.1	1.8	6 0.99 Eq (H1-1a)	90.0	50	W10X77	
Column Line E-4								
Level	Pu	Mux	Muy	LC Interaction Eq.	Angle	Fy	Size	
Main Roof	92.0	54.0	3.5	6 0.58 Eq (H1-1a)	90.0	50	W12X40	
Story 7	177.6	25.0	1.5	2 0.69 Eq (H1-1a)	90.0	50	W12X40	
Story 6	250.4	23.5	2.6	6 0.93 Eq (H1-1a)	90.0	50	W12X40	
Story 5	330.6	23.1	1.5	2 0.73 Eq (H1-1a)	90.0	50	W12X53	
Story 4	413.4	23.1	1.5	2 0.89 Eq (H1-1a)	90.0	50	W12X53	
Story 3	496.5	27.3	2.0	2 0.71 Eq (H1-1a)	90.0	50	W12X72	
Story 2	576.0	19.4	1.8	6 0.97 Eq (H1-1a)	90.0	50	W12X72	
Column Line E-1								
Level	Pu	Mux	Muy	LC Interaction Eq.	Angle	Fy	Size	
Main Roof	92.0	54.0	3.5	6 0.58 Eq (H1-1a)	90.0	50	W12X40	
Story 7	177.6	25.0	1.5	2 0.69 Eq (H1-1a)	90.0	50	W12X40	
Story 6	250.4	23.5	2.6	6 0.93 Eq (H1-1a)	90.0	50	W12X40	
Story 5	330.6	23.1	1.5	2 0.73 Eq (H1-1a)	90.0	50	W12X53	
Story 4	413.4	23.1	1.5	2 0.89 Eq (H1-1a)	90.0	50	W12X53	
Story 3	496.5	27.3	2.0	3 0.71 Eq (H1-1a)	90.0	50	W12X72	
Story 2	576.0	19.4	1.8	6 0.97 Eq (H1-1a)	90.0	50	W12X72	
Column Line F-4								
Level	Pu	Mux	Muy	LC Interaction Eq.	Angle	Fy	Size	
Main Roof	92.0	54.0	3.5	10 0.58 Eq (H1-1a)	90.0	50	W12X40	
Story 7	177.6	25.0	1.5	4 0.69 Eq (H1-1a)	90.0	50	W12X40	
Story 6	250.4	23.5	2.6	10 0.93 Eq (H1-1a)	90.0	50	W12X40	
Story 5	330.6	23.1	1.5	4 0.73 Eq (H1-1a)	90.0	50	W12X53	
Story 4	413.4	23.1	1.5	4 0.89 Eq (H1-1a)	90.0	50	W12X53	
Story 3	496.5	27.3	2.0	5 0.71 Eq (H1-1a)	90.0	50	W12X72	
Story 2	576.0	19.4	1.8	10 0.97 Eq (H1-1a)	90.0	50	W12X72	

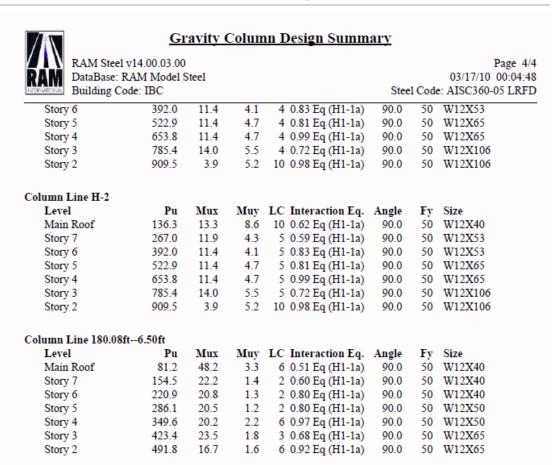
Structural Option Potomac, MD

Consultant: Professor Parfitt 05/07/2010

Thesis Final Report

Gravity Column Design Summary

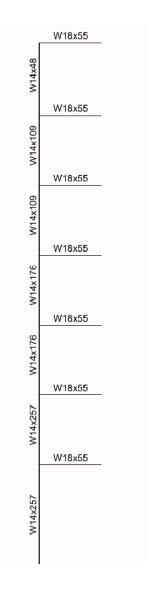
RAM Steel v14.00.03.00 DataBase: RAM Model Steel Building Code: IBC


03/17/10 00:04:48 Steel Code: AISC360-05 LRFD

Page 3/4

Column Line F-1										
Level	Pu	Mux	Muy	LC Interaction Eq.	Angle	Fy	Size			
Main Roof	92.0	54.0	3.5	10 0.58 Eq (H1-1a)	90.0	50	W12X40			
Story 7	177.6	25.0	1.5	4 0.69 Eq (H1-1a)	90.0	50	W12X40			
Story 6	250.4	23.5	2.6	10 0.93 Eq (H1-1a)	90.0	50	W12X40			
Story 5	330.6	23.1	1.5	4 0.73 Eq (H1-1a)	90.0	50	W12X53			
Story 4	413.4	23.1	1.5	4 0.89 Eq (H1-1a)	90.0	50	W12X53			
Story 3	496.5	27.3	2.0	4 0.71 Eq (H1-1a)	90.0	50	W12X72			
Story 2	576.0	19.4	1.8	10 0.97 Eq (H1-1a)	90.0	50	W12X72			
Column Line 152.08ft121.00ft										
Level	Pu	Mux		LC Interaction Eq.		Fy	Size			
Main Roof	88.5	46.2	3.0	10 0.68 Eq (H1-1a)	90.0	50	W10X33			
Story 7	170.0	21.6	1.2	4 0.66 Eq (H1-1a)	90.0	50	W10X39			
Story 6	243.6	20.3	1.3	4 0.89 Eq (H1-1a)	90.0	50	W10X39			
Story 5	315.9	19.8	1.2	4 0.74 Eq (H1-1a)	90.0	50	W10X49			
Story 4	393.3	19.7	1.2	4 0.90 Eq (H1-1a)	90.0	50	W10X49			
Story 3	472.5	24.0	1.5	5 0.68 Eq (H1-1a)	90.0	50	W10X77			
Story 2	548.6	17.1	1.8	10 0.99 Eq (H1-1a)	90.0	50	W10X77			
Column Line 152.08ft2.17ft										
Level	Pu	Mux	Muy	LC Interaction Eq.	Angle	Fy	Size			
Main Roof	88.5	46.2	3.0	10 0.68 Eq (H1-1a)	90.0	50	W10X33			
Story 7	170.0	21.6	1.2	4 0.66 Eq (H1-1a)	90.0	50	W10X39			
Story 6	243.6	20.3	1.3	4 0.89 Eq (H1-1a)	90.0	50	W10X39			
Story 5	315.9	19.8	1.2	4 0.74 Eq (H1-1a)	90.0	50	W10X49			
Story 4	393.3	19.7	1.2	4 0.90 Eq (H1-1a)	90.0	50	W10X49			
Story 3	472.5	24.0	1.5	4 0.68 Eq (H1-1a)	90.0	50	W10X77			
Story 2	548.6	17.1	1.8	10 0.99 Eq (H1-1a)	90.0	50	W10X77			
Column Line 180.08ft-	-116.67ft									
Level	Pu	Mux	Muy	LC Interaction Eq.	Angle	Fy	Size			
Main Roof	81.2	48.2	3.3	6 0.51 Eq (H1-1a)	90.0	50	W12X40			
Story 7	154.5	22.2	1.4	2 0.60 Eq (H1-1a)	90.0	50	W12X40			
Story 6	220.9	20.8	1.3	2 0.80 Eq (H1-1a)	90.0	50	W12X40			
Story 5	286.1	20.5	1.2	2 0.80 Eq (H1-1a)	90.0	50	W12X50			
Story 4	349.6	20.2	2.2	6 0.97 Eq (H1-1a)	90.0	50	W12X50			
Story 3	423.4	23.5	1.8	2 0.68 Eq (H1-1a)	90.0	50	W12X65			
Story 2	491.8	16.7	1.6	6 0.92 Eq (H1-1a)	90.0	50	W12X65			
Column Line H-3	_					_				
Level	Pu	Mux		LC Interaction Eq.	Angle	Fy	Size			
Main Roof	136.3	13.3	8.6	11 0.62 Eq (H1-1a)	90.0	50	W12X40			
Story 7	267.0	11.9	4.3	4 0.59 Eq (H1-1a)	90.0	50	W12X53			

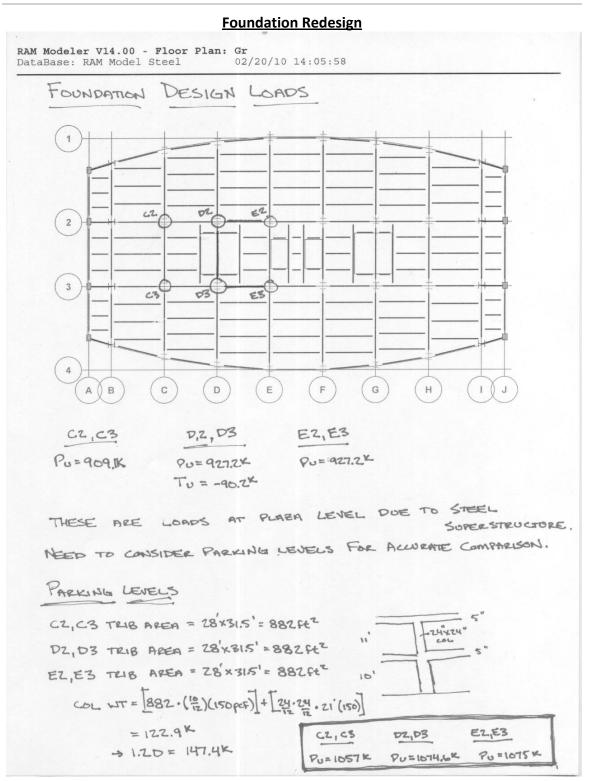
Structural Option Potomac, MD


Consultant: Professor Parfitt 05/07/2010

Consultant: Professor Parfitt 05/07/2010

Thesis Final Report

Additionally, there are eight column lines along grid B and grid I that were designed to resist the moments due to the cantilever. A typical column line for this case is shown below.


Note: Columns that participated in resisting lateral forces as part of the braced frames are available in Appendix D.

Structural Option

Potomac, MD

Consultant: Professor Parfitt

05/07/2010

Structural Option Potomac, MD

Consultant: Professor Parfitt 05/07/2010

	KYLE WAGNER	THESIS	FOUNDATIONS	1
	DESIGN FIND	FOR AXIAL LOAD	(c2,c3)	
	PG= 1057K	USE	f' = 3000 ps;	
5 SQUARES 5 SQUARES 5 SQUARES FILLER	4000 psf ALLO	WABLE BEARING CAPA	cure .	
EETS — 5 SC EETS — 5 SC EETS — 5 SC EETS — FILL	$q_a = \frac{P}{A}$	4 KSF = 1057K	B = 16.3 -> 17' SQUARE F	TNG
3-0235 — 50 SH 3-0236 — 100 SH 3-0237 — 200 SH 3-0137 — 200 SH	$q = \frac{P}{A} = \frac{106}{170}$	57 - 3.66 KGF =	25.42 ps;	
8 8 8 8	EXISTING PAR	KING GARAGE COLUM	nn 15 24" x30"	
COMET	(7' L) 36'	D=24"		
	171			
	PONCHING SHE	EAR		
	d2 (4 ve+0	q)+d(zve+q)(b.	+c) = q (BL -bc)	
	N _C	< (2 + 4) JF'2	$= \left(2 + \frac{2\alpha}{3\alpha}\right)\sqrt{F'_{c}} = 5.2\sqrt{F'_{c}}$	
		€ (x5d +2) JFE	= (40(24) +2) \[= 10.9	Je.5
		< 4 JF2 < 0	CONTROLS	
	Vc= \$4J	Fe = 0.75 (4) \$3000 :	= 164 ps:	
	d2 (4(164))+25,42)+d(2(164)+	25.42)(24+30) = 25.42 (204"	2 - (24)(30))
~	681.42	d2 + 19084.7 d =	1039676.3	
		d= 27.5"	· ·	

Structural Option

Potomac, MD

Consultant: Professor Parfitt

05/07/2010

	KYLE WAGNER	THESIS	FOUNDATIONS	Z
	h= d+3"+d		Assume #5's	
	= 27,5+3**	+ 0.625" = 31.125		
5 SQUARES 5 SQUARES FILLER	USE h=32"			
	d to midpoin	T OF TOP AND BOT	BARS	
200 SHEETS 200 SHEETS 200 SHEETS	d = 32"-3"-	0.625 = 28.375"		
3-0236 — 3-0237 — 3-0137 —	FLEXURE			
сомет	l= 17'-2'=	7.5'		
0	Mo = 202 =	3.66×5 (75')2 _	10Z.9 1K	
	a = AsF1 .	As (60) =	1.96As	
	$m_0 = \phi m_n =$	\$ AsFy (d-a/2))	
) = 0.9 As (60) (2	8.375" - 1.96A5	
	As = 0.8			
	INSTEAD, TEX #9	A=1.0 6=1.128	io	
		1.128" = 27.87"	10,01	
		0.9 As (60) (27.8	7 - (1983)	
	#9@14"	846 in 2		

Consultant: Professor Parfitt 05/07/2010

	KYLE WAGNER	THESIS	FOUNDATIONS
	TRY #7 BARS	A = 0.60 Ø = 0.875"	
		"-0.875 = 28.125	
SS		0.9 (As) (60) (28.125	-1.9645)
5 SQUARES FILLER		0.837	
000	TRY #8 BARS	A = 0.79 Ø = 1"	
200 SHEETS		0.9(45)(66)(28 -1	96As)
3-0237 — 3-0137 — 2		0.841 1,2	
9 9 9	USE #8	BAES @ 10" O.C.	As = 6.948 in2
	446		
	- CHECK MIN S	TEEL	
DE	P= As =	(12)(37")	25 2 0.0018 - oxave
	- CHECK DUCTION	= 1.96 (0.9u8) = 1.	358"
	0.85526	= (.16(0.145)	
	C = 00 =	1.858 = 2.186"	
	0.05	0.85	
	Es = 0.00?	$\frac{1}{2}(d-c) = \frac{0.003}{2.136}$. 28 - 2.186) = 6.0354
		5 1% > 6.055 :	Ø=0.9 → OKAK /
1	- SPACING OKA	43d /	
	- CHECK BEARING	3 \$Bn = \$ 0.85 F	
		= 0.65(0.80 #8 EW, EVENLY	5) (b ==) (24 x 30") = 2386 > Pu

Consultant: Professor Parfitt 05/07/2010

	KYLE WAGNER	THESIS	FOUNDATIONS	1
	DESIGN FOUNDA	ATIONS AT DZ, D3	,EZ,E3	
	PU=1075 K	USE f'c	=3000 psi	
5 SQUARES 5 SQUARES FILLER	9a = 4000 ps	2		
SHEETS — 5 SQL SHEETS — 5 SQL SHEETS — 5 SQL SHEETS — FILLE	9a = A	4 KSF = 1075 B2	> B = 16.39 > 17 SQUARE	
3-0236 — 100 SH 3-0237 — 200 SH 3-0137 — 200 SH	$q = \frac{P}{A} = \frac{1075}{17(17)}$	= 3.719 ×5F = 3	25.83 ps:	
	EXISTING COLI	omu 15 24" x 24"		
СОМЕТ	17 24 Z4 Z4 Z4	15 = 24 C = 24		
	PUNCHING SHE	EAR		
	d2 (47c+	q)+d(2~+q)(b	+c) = q(BL-bc)	
	N ₂ ≤	(2+4) \[\(\frac{4}{1} \) \\ \(\frac{1}{1} \)		
	_	((sd + z) JF' "	DUT CONTROL	
	4	4 JF' - CONTRO	515	
	N. =	BUJE' = 0.75(4)	3000 = 164 ps;	
	d= (4(164))+25.83)+d(2(164)+2	5.83)(48) = 25.83 (2042 - 2	(42)
0	681.83	d= + 16983.8 d d=28.89"	= 1 060 063.2	

Structural Option

Potomac, MD

Consultant: Professor Parfitt

05/07/2010

	KYLE WAGNER	THESIS	FOUNDATIONS	2
	h = d + 3" + db	Assume	#85	
	h = 28.89+3+	1		
RES	h = 32.89			
- 5 SQUARES - FILLER	USE h=34"	1=34-3-1	= 30"	
SHEETS -	FLEXURE			
3-0237 — 200 3-0137 — 200	L=17'-2'	_ 7.5'		
	mu= 222	= 3.72 KAF (7.5)2	= 104.63 1K	
	a = 1.96 As	For F'L = 3000	PS:	
	$m_{\nu} = \phi m_{n}$	= \$AsFy (d-9)	/2)	
	104.63 (12)	= 0.9 As (60) (30) - 1.96 2	
	As	= 6.796 in2		
	#8@""	6.c. As=0	.862 in 2	
	CHECK MIN STEE			
	P = As = 1	0.867 2 0.00	211 2 0.0018 : OFA	u
	CHECK DUCTILITY			
		1.862) = 1.6896	9"	
	C = 9 =	0-85 - 1,99"		
	Es = 0.003	3 (a-c)		

Structural Option Potomac, MD

Consultant: Professor Parfitt 05/07/2010

	KYLE WAGNER	THESIS	FOUNDATIONS	3
	Es = 0.00	3 (30-1.99) = 6	0.0422 "/m 20.005 .: \$=0	
TS — 5 SQUARES	SPACIND OXAGE 5 4 18" 6 3 d	BY INSPECTION		
200 SHEETS 200 SHEETS	CHECK BEARI	واد		
3-0137 — 3-01	= 0	6 0.85 F'c A1 0.65 (0.85) (645) (-		
	USE 20 #8	S EW, EVENLY	SPACED	
-				

Consultant: Professor Parfitt 05/07/2010

Thesis Final Report

Critical Girder Optimized

Gravity Beam Design

RAM Steel v14.00.03.00

DataBase: RAM Model Steel 021110 03/16/10 22:27:55
Building Code: IBC Steel Code: AISC360-05 ASD

Floor Type: Gr Beam Number = 23

SPAN INFORMATION (ft): I-End (96.08,-44.33) J-End (96.08,0.00)

Maximum Depth Limitation specified = 22.00 in

Beam Size (Optimum) = W21X93 Fy = 50.0 ksi

Total Beam Length (ft) = 44.33

COMPOSITE PROPERTIES (Not Shored):

			Left		Right
Concrete thickness	s (in)		3.50		3.50
Unit weight concr	ete (pcf)		115.00		115.00
f'c (ksi)			3.00		3.00
Decking Orientati	on		parallel		parallel
Decking type			CMC-USD		CMC-USD
			2.0LokFloor		2.0LokFloor
beff (in)	=	133.00	Y bar(in)	-	19.05
Mnf (kip-ft)	=	1597.89	Mn (kip-ft)	=	1306.40
C (kips)	=	371.34	PNA (in)	=	17.20
Ieff (in4)	=	3923.97	Itr (in4)	=	5384.74
Stud length (in)	=	4.00	Stud diam (in)	=	0.75
Stud Capacity (kip	os) Qn =	17.7 R	g = 1.00 Rp = 0.75		
# of studs per stud	segment:	Full	= 34,34,1,34,34		
		Partial Partial	= 10,10,3,10,10		

Actual = 10,10,3,10,10 Number of Stud Rows = 1 Percent of Full Composite Action = 29.81

POINT LOADS (kips):

-	OL: IL	nus (n	ъз,								
	Dist	DL	CDL	RedLL	Red%	NonRLL	StorLL	Red%	RoofLL	Red%	CLL
	8.867	6.61	5.99	12.41	41.3	0.00	0.00	0.0	0.00	Snow	2.48
	8.867	6.61	5.99	12.41	41.3	0.00	0.00	0.0	0.00	Snow	2.48
	17.733	6.61	5.99	12.41	41.3	0.00	0.00	0.0	0.00	Snow	2.48
	17.733	6.61	5.99	12.41	41.3	0.00	0.00	0.0	0.00	Snow	2.48
	26.600	6.61	5.99	12.41	41.3	0.00	0.00	0.0	0.00	Snow	2.48
	26.600	6.61	5.99	12.41	41.3	0.00	0.00	0.0	0.00	Snow	2.48
	35.466	6.61	5.99	12.41	41.3	0.00	0.00	0.0	0.00	Snow	2.48
	35.466	6.35	5.76	11.91	41.3	0.00	0.00	0.0	0.00	Snow	2.38

LINE LOADS (k/ft):

Load	Dist	DL	CDL	LL	Red%	Type	CLL
1	0.000	0.093	0.093	0.000		NonR	0.000
	44.333	0.093	0.093	0.000			0.000

SHEAR: Max Va (DL+LL) = 57.56 kips Vn/1.50 = 250.56 kips

MOMENTS:

Span	Cond	LoadCombo	Ma	@	Lb	Съ	Ω	Mn/Ω
			kip-ft	ft	ft			kip-ft
Center	PreCmp+	DL+LL	472.1	21.5	8.9	1.00	1.67	517.21
	Init DL	DL	340.5	21.6				
	Max +	DL+LL	760.1	20.9			1.67	782.27

Park Potomac Office Building "E"

Kyle Wagner

Structural Option Potomac, MD

Consultant: Professor Parfitt 05/07/2010

Thesis Final Report

Gravity Beam Design

RAM Steel v14.00.03.00

Page 2/2

RAM INTERNATIONAL	DataBase: RAN Building Code:	Ste	eel Code		/16/10 22:27:55 SC360-05 ASD				
Span	Cond	LoadCombo	Ma	@	Lb	Съ		Ω	Mn / Ω
Controllin	ıg	DL+LL	760.1	20.9			1.6	57	782.27
REACTI	ONS (kips):								
			Left	Right					
Initial	l reaction		35.89	35.69					
DL re	eaction		28.45	28.30					
Max -	+LL reaction		29.11	28.93					
Max -	+total reaction (factored)	57.56	57.23					
DEFLEC	TIONS: (Cam	ber = 1-1/2							
Initial	l load (in)	at	22.17 ft	=	-2.021	L/D	= 2	263	
Live 1	load (in)	at	22.17 ft	=	-1.211	L/D	= 4	139	
Post (Comp load (in)	at	22.17 ft	=	-1.314	L/D	= 4	105	
	otal load (in)	at	22.17 ft	=	-1.835	L/D	= 2	290	

Structural Option Potomac, MD

Consultant: Professor Parfitt 05/07/2010

Thesis Final Report

Appendix B: Wind

Consultant: Professor Parfitt 05/07/2010

Thesis Final Report

Wind Analysis Calculations

KYLE WAGNER	WIND ANALYSIS	TECH 1	1
WIND IN EAS	ST - WEST DIRECTION		
DETERMINE	VELOCITY PRESSUR	es , 92 9h	
	WIND SPEED		,
	POTOMAC, MD V = 90 mpl	1 [Fig 6-1]	
WIND	DIRECTIONALITY FACTOR		
	Kd = 0.85	[TABLE 6-4]	
IMPOR	TANCE FACTOR		
	I=1.0		
Expos	DEE CATEGORY: B		
TOPOGE	APHIC FACTOR		
	Ket = 1.0		
DETER	-MINE VEL PRESSURE EX	POSORE COEFF KE, KA	
	SEE FIGURE FOR DATA		
DETER	MINE VEL PRESSURES		
	92 = 6.00256Kz Kzt Kd V2	I	
	9 = 0.00256 Kh Kze Kd) ² I	
	SEE FIGURE FOR DATE	n	
G.XT EFF	ECT FACTORS		
	HE : MOST LIKELY FLEXIBLE		
	100/H = 100/93.5 \$ 1.0		
(1=0	0.85 (6.5.8.1)		

Structural Option

Potomac, MD

Consultant: Professor Parfitt

05/07/2010

KYLE WAGNER WIND ANALYSIS TECH !	2
BUILDING FULL ENCLOSED W/ PARAPET (161)	
GCPN = +1.5 WINDWARD GCPN = -1.0 LEEWARD	
Combined NET DESIGN PRESSURE ON PARAPET Pp = 9p G Cyn	
SEE FIGURE FOR DATA	
BUILDING NOT LOW RISE , FLEXIBLE BUILDING > YES	
DETERMINE 92 194 CP , GCPi SEE FIGURES	
DETERMINE DESIGN WIND PRESSORES	
WINDWARD: PE = qEGCp -qn (GCpi)	
LEEWARD: PI = 9,6Cp - 9,6Cpi)	
SEE FLOURE	

Consultant: Professor Parfitt 05/07/2010

E-W Basic Wind Analy	ysis Factors	
Exposure B		
Case 2		
L (Most conservative) =	127.5	ft
B=	223.75	ft
L/B=	0.570	
Basic Wind Speed	V=	90
Wind Directionality Factor	Kd=	0.85
Importance Factor	l=	1
Exposure Category	Category	В
Topographical Factor	Kzt=	1
Gust Effect Factor	G=	0.85
Cp Windward	Cp=	0.8
Cp Leeward	Cp=	-0.5
Gcpi Windward		0.18
Gcpi Leeward		-0.18
GCpn Windward		1.5
GCpn Leeward		-1

E-W Velocity	Pressure Expo	sure Coeffi	cients, Kh and	Kz
Level	Height (ft above Plaza)	Kz, Kh, Kp	qz, qh, qp Windward	qz, qh Leeward
Plaza Level	0	0.570	10.047	17.443
	9.5	0.570	10.047	17.443
2nd Floor	19	0.615	10.838	17.443
	25.75	0.671	11.821	17.443
3rd Floor	32.5	0.717	12.634	17.443
	39.25	0.757	13.334	17.443
4th Floor	46	0.792	13.952	17.443
	52.75	0.823	14.509	17.443
5th Floor	59.5	0.852	1 <i>5</i> .01 <i>7</i>	17.443
	66.25	0.879	15.485	17.443
6th Floor	73	0.903	15.920	17.443
	79.75	0.926	16.328	17.443
7th Floor	86.5	0.948	16.711	17.443
	93.5	0.969	17.087	17.443
Main Roof	100.5	0.990	17.443	17.443
Penthouse Level	116.5	1.032	18.195	17.443

Structural Option Potomac, MD

Consultant: Professor Parfitt 05/07/2010

		E-W	Calculation	of Design	Wind Press	ures		
					Wind	ward	Leev	ward
Level	Height (ft above Plaza)	External Pressure Windward (psf)	External Pressure Leeward (psf)	Internal Pressure (psf)	Net Pressure P Pos (psf)	Net Pressure P Neg (psf)	Net Pressure P Pos (psf)	Net Pressure P Neg (psf)
Plaza	0	6.83	<i>-7.</i> 41	3.28	3.56	10.11	-10.69	-4.14
Level	9.5	6.83	-7.41 -7.41	3.28	3.56	10.11	-10.69	-4.14
2nd Floor	19	7.37	-7.41	3.28	4.09	10.64	-10.69	-4.14
	25.75	8.04	-7.41	3.28	4.76	11.31	-10.69	-4.14
3rd Floor	32.5	8.59	-7.41	3.28	5.32	11.87	-10.69	-4.14
	39.25	9.07	-7.41	3.28	5.79	12.34	-10.69	-4.14
4th Floor	46	9.49	-7.41	3.28	6.21	12.76	-10.69	-4.14
	52.75	9.87	-7.41	3.28	6.59	13.14	-10.69	-4.14
5th Floor	59.5	10.21	-7.41	3.28	6.94	13.49	-10.69	-4.14
	66.25	10.53	-7.41	3.28	7.25	13.80	-10.69	-4.14
6th Floor	73	10.83	-7.41	3.28	7.55	14.10	-10.69	-4.14
	79.75	11.10	-7.41	3.28	7.83	14.38	-10.69	-4.14
7th Floor	86.5	11.36	-7.41	3.28	8.09	14.64	-10.69	-4.14
	93.5	11.62	-7.41	3.28	8.34	14.89	-10.69	-4.14
Main Roof	100.5	11.86	-7.41	3.28	8.59	15.14	-10.69	-4.14

Structural Option Potomac, MD

Consultant: Professor Parfitt 05/07/2010

		E-W De	esign Press	ures		
Level	Height (ft above Plaza)	Design Pressure Windward (psf)	Design Pressure Leeward (psf)	Total Pressure (psf)	Force of Total Pressure (k)	Story Shear Total (k)
Plaza Level	0	6.83	-7.41	14.24	28.69	423.35
	9	6.83	-7.41	14.24		
2nd Floor	18	7.37	-7.41	14.78	50.44	394.66
	24.25	8.04	-7.41	15.45		
3rd Floor	30.5	8.59	-7.41	16.00	44.76	344.22
	36.75	9.07	-7.41	16.48		
4th Floor	43	9.49	-7.41	16.90	47.27	299.46
	49.25	9.87	-7.41	17.28		
5th Floor	55.5	10.21	-7.41	17.62	49.29	252.19
	61.75	10.53	-7.41	17.94		
6th Floor	68	10.83	-7.41	18.24	51.01	202.90
	74.25	11.10	-7.41	18.52		
7th Floor	80.5	11.36	-7.41	18.78	53.57	151.88
	87	11.62	-7.41	19.03		
Main Roof	93.5	11.86	-7.41	19.27	28.03	98.32
Penthouse	109.5	12.37	-7.26	19.63	70.28	70.28
			_	_		

Base Shear	423	K
------------	-----	---

Consultant: Professor Parfitt 05/07/2010

N-S Basic Wind Analy	sis Factors	
Exposure B		
Case 2		
L (Most Conservative)=	223.75	ft
B=	127.5	ft
L/B=	1.755	
Basic Wind Speed	V=	90
Wind Directionality Factor	Kd=	0.85
Importance Factor	 =	1
Exposure Category	Category	В
Topographical Factor	Kzt=	1
Gust Effect Factor	G=	0.85
Cp Windward	Cp=	0.8
Cp Leeward	Cp=	-0.35
Gcpi Windward		0.18
Gcpi Leeward		-0.18
GCpn Windward		1.5
GCpn Leeward		-1

N-S Velocity Pressure Exposure Coefficients, Kh and Kz					
Level	Height (ft above Plaza)	Kz, Kh, Kp	qz, qh, qp Windward	qz, qh Leeward	
Plaza Level	0	0.570	10.047	17.443	
	9.5	0.570	10.047	17.443	
2nd Floor	19	0.615	10.838	17.443	
	25.75	0.671	11.821	17.443	
3rd Floor	32.5	0.717	12.634	17.443	
	39.25	0.757	13.334	17.443	
4th Floor	46	0.792	13.952	17.443	
	52.75	0.823	14.509	17.443	
5th Floor	59.5	0.852	15.017	17.443	
	66.25	0.879	15.485	17.443	
6th Floor	73	0.903	15.920	17.443	
	79.75	0.926	16.328	17.443	
7th Floor	86.5	0.948	16.711	17.443	
	93.5	0.969	17.087	17.443	
Main Roof	100.5	0.990	17.443	17.443	
Penthouse Level	116.5	1.032	18.195	17.443	

Structural Option Potomac, MD

Consultant: Professor Parfitt 05/07/2010

		N-S (Calculation	of Design	Wind Press	ures		
					Wind	ward	Leev	vard
Level	Height (ft above Plaza)	External Pressure Windward	External Pressure Leeward	Internal Pressure	Net Pressure P Pos (psf)	Net Pressure P Neg (psf)	Net Pressure P Pos (psf)	Net Pressure P Neg (psf)
Plaza Level	0	6.832	-5.189	3.275	3.557	10.107	-8.464	-1.914
Level	9.5	6.832	-5.189	3.275	3.557	10.107	-8.464	-1.914
2nd Floor	19	7.370	-5.189	3.275	4.094	10.645	-8.464	-1.914
	25.75	8.038	-5.189	3.275	4.763	11.313	-8.464	-1.914
3rd Floor	32.5	8.591	-5.189	3.275	5.316	11.866	-8.464	-1.914
	39.25	9.067	-5.189	3.275	5.792	12.342	-8.464	-1.914
4th Floor	46	9.488	-5.189	3.275	6.212	12.763	-8.464	-1.914
	52.75	9.866	-5.189	3.275	6.591	13.141	-8.464	-1.914
5th Floor	59.5	10.211	-5.189	3.275	6.936	13.487	-8.464	-1.914
	66.25	10.530	-5.189	3.275	7.255	13.805	-8.464	-1.914
6th Floor	73	10.826	-5.189	3.275	7.551	14.101	-8.464	-1.914
	79.75	11.103	-5.189	3.275	7.828	14.378	-8.464	-1.914
7th Floor	86.5	11.364	-5.189	3.275	8.088	14.639	-8.464	-1.914
	93.5	11.619	-5.189	3.275	8.344	14.894	-8.464	-1.914
Main Roof	100.5	11.861	-5.189	3.275	8.586	15.136	-8.464	-1.914

Structural Option Potomac, MD

Consultant: Professor Parfitt 05/07/2010

		N-S De	esign Press	ures		
Level	Height (ft above Plaza)	Design Pressure Windward (psf)	Design Pressure Leeward (psf)	Total Pressure (psf)	Force of Total Pressure (k)	Story Shear Total (k)
Plaza Level	0	6.83	-5.19	12.02	13.79	210.28
	9	6.83	-5.19	12.02		
2nd Floor	18	7.37	-5.19	12.56	24.42	196.49
	24.25	8.04	-5.19	13.23		
3rd Floor	30.5	8.59	-5.19	13.78	21.96	172.07
	36.75	9.07	-5.19	14.26		
4th Floor	43	9.49	-5.19	14.68	23.39	150.11
	49.25	9.87	-5.19	15.06		
5th Floor	55.5	10.21	-5.19	15.40	24.54	126.72
	61.75	10.53	-5.19	15.72		
6th Floor	68	10.83	-5.19	16.02	25.52	102.17
	74.25	11.10	-5.19	16.29		
7th Floor	80.5	11.36	-5.19	16.55	26.91	76.65
	87	11.62	-5.19	16.81		
Main Roof	93.5	11.86	-5.19	17.05	14.13	49.74
Penthouse	109.5	12.37	-5.08	17.46	35.61	35.61

Base Shear 210 K

Structural Option Potomac, MD

Consultant: Professor Parfitt 05/07/2010

Thesis Final Report

Appendix C: Seismic

Consultant: Professor Parfitt 05/07/2010

Thesis Final Report

Seismic Analysis Calculations

	KKLE WAGNER	THESIS FINAL	SEISMIC	
	SEISMIC RED	ESIGN		
	55 = 0.156			
5 SQUARES 5 SQUARES 5 SQUARES FILLER	5, = 0.051			
	5011 SITE CI	NO 5, >0.04		
SHEETS SHEETS SHEETS SHEETS		Fa Ss = 1.6 (0.156) =	0.2496	
3-0235 — 50 3-0236 — 100 3-0237 — 200 3-0137 — 200		F, 5, = 2.4 (0.051)=		
0000	5 = 25,	15/3 = 0-166		
COMET				
	Sp. = 25.	1/3 = 0.081		
	FIND SDC:			
	5 _{D1} = 0	.081 0.067 £ 501	46.133	
	- SEISMIC	DESIGN CATEGORY	В	
	R=3	(STEEL SYSTEMS A	NOT PETAILED FOR SEISMI	4)
	I=1.0			
	FIND BASE S	CANADA CA		
	Tx=1.6672	sec Ty = 1.605.	Ssec	
		sec [File 22-15]		
		7 ITABLE 12.8-1] 02 X = 0.75 IT	20-27	
	Ct 20.	X = 0. /3 III	NSOC 120-21	

Structural Option Potomac, MD

Consultant: Professor Parfitt 05/07/2010

	KYLE WAGNE	R THESIS	FINAL	SEISMIC	2
SHEETS — 5 SQUARES SHEETS — 5 SQUARES SHEETS — 5 SQUARES SHEETS — FILLER	T & Co	Ta = 1.7 (0.6)	348) = 1.07	19 4- CONTROLS BOTH PIRECTION	25
3-0235 — 50 3-0236 — 100 3-0237 — 200 3-0137 — 200	Cs = min	Sps/(R/I) = 0 Sp/(T. P/I) = 0 Sp/(T. P/I) = 1 (3p/(T. P/I) = 1	0.081/1.074.3	20-0250 20-0250 20-0250 20-0250	
		= 0.0250 (= 222 K	(3895)		

Structural Option Potomac, MD

Consultant: Professor Parfitt 05/07/2010

Thesis Final Report

Formulation of Building Weight

Gravity Beam Design Takeoff

RAM Steel v14.00.03.00 DataBase: RAM Model Steel Building Code: IBC

02/12/10 15:13:22 Steel Code: AISC360-05 ASD

STEEL BEAM DESIGN TAKEOFF:

Floor Type: Gr Story Levels 1 to 7 Steel Grade: 50

SIZE	#	LENGTH (ft)	WEIGHT (lbs)
W8X10	33	365.87	3685
W10X12	18	436.88	5263
W12X14	8	170.00	2406
W12X16	4	112.00	1795
W12X19	54	1509.83	28617
W14X22	10	293.00	6471
W16X26	2	69.00	1803
W14X30	2	69.00	2078
W16X31	16	487.00	15130
W18X40	4	124.33	4992
W21X44	2	69.00	3052
W21X50	2	69.00	3451
W24X62	4	151.33	9372
W24X68	4	168.66	11536
W27X84	4	177.33	14965
	167		114616

Total Number of Studs = 2792

TOTAL STRUCTURE GRAVITY BEAM TAKEOFF

Steel Grade: 50

SIZE	#	LENGTH (ft)	WEIGHT (lbs)
W8X10	231	2561.12	25796
W10X12	126	3058.14	36838
W12X14	56	1190.00	16845
W12X16	28	784.00	12565
W12X19	378	10568.82	200316
W14X22	70	2051.00	45294
W16X26	14	483.00	12622
W14X30	14	483.00	14545
W16X31	112	3409.00	105909
W18X40	28	870.32	34946
W21X44	14	483.00	21366
W21X50	14	483.00	24160

Park Potomac Office Building "E"

Structural Option Potomac, MD

Consultant: Professor Parfitt 05/07/2010

Thesis Final Report

Gravity Beam Design Takeoff

RAM Steel v14.00.03.00 DataBase: RAM Model Steel Building Code: IBC Page 2/2 02/12/10 15:13:22 Steel Code: AISC360-05 ASD

SIZE	#	LENGTH (ft)
W24X62	28	1059.32
W24X68	28	1180.65
W27X84	28	1241.32

WEIGHT (lbs) 65605 80751 104754

1169

802313

Total Number of Studs = 19544

Structural Option Potomac, MD

Consultant: Professor Parfitt 05/07/2010

Thesis Final Report

Gravity Column Design TakeOff

RAM Steel v14.00.03.00 DataBase: RAM Model Steel Building Code: IBC

Base: RAM Model Steel 02/13/10 16:08:56 ling Code: IBC Steel Code: AISC360-05 ASD

Steel Grade: 50

T	 -4	
		or

Size	#	Length (ft)	Weight (lbs)
W10X33	16	220.0	7269
W10X39	8	108.0	4226
W12X40	12	166.0	6609
W14X43	12	166.0	7117
W12X45	8	108.0	4814
W10X45	4	54.0	2444
W14X48	4	54.0	2591
W10X49	12	162.0	7938
W12X53	12	162.0	8600
W10X54	4	54.0	2903
W10X60	4	54.0	3234
W14X61	12	162.0	9867
W12X65	8	108.0	7019
W14X68	4	54.0	3675
W12X72	4	54.0	3877
W14X74	4	54.0	4006
W10X77	4	76.0	5845
W12X79	4	76.0	6000
W14X82	4	54.0	4410
W12X87	4	54.0	4704
W10X88	4	76.0	6698
W14X90	8	108.0	9739
W14X99	4	76.0	7526
W14X109	4	76.0	8276
W12X120	4	76.0	9129
	168		148515

Structural Option Potomac, MD

Consultant: Professor Parfitt 05/07/2010

	the same of the same of			N. Bull	CC	OMPOS		OPERT	IES		MALL		
	Slab Depth	φM _m in.k	A _c in ²	Vol. ft ³ /ft ²	W	S _c in ³	I _{av} in ⁴	φM _{no} in.k	φV _{nt} lbs.		nshored s 2span		Aww
	4.50	40.27	32.6	0.292	34	1.00	4.4	28.13	4270	6.32	8.46	8.56	0.02
	5.00	46.44	37.5	0.292	38		6.0	33.12			8.09		0.02
a.	5.25	49.53		0.354	41	1.18			4610	6.03		8.19	
×			40.0				6.9	35.69	4790	5.90	7.93	8.02	0.02
lage	5.50	52.61 58.78	42.6 48.0	0.375	43	1.36	7.9	38.29	4970	5.77	7.77	7.86	0.03
Ö	6.00 6.25	61.87		0.417	48 50	1.55	10.1	43.58	5340	5.55	7.49	7.58	0.03
	6.50	64.95	50.8 53.6	0.438 0.458	53	1.65	12.7	46.26 48.97	5540	5.45 5.36	7.36	7.45	0.03
7	7.00	71.12	59.5	0.500	58	1.75	15.7		5730		7.24	7.32	0.04
М	7.25	74.21	61.9	0.521	60	2.04	17.4	54.44 57.20	6150 6310	5.18 5.10	7.01	7.10	0.04
	7.50	77.29	64.3	0.542	62	2.14	19.2	59.97			6.91	6.99	
	4.50	48.60		0.342					6480	5.05	6.81	6.89	0.05
	5.00	56.18	32.6 37.5		34	1.20	4.8	33.77	4560	7.42	9.71	10.03	0.02
d)	5.25	59.96		0.333 0.354	38 41	1.42	6.5	39.80	5030	7.07	9.28	9.59	0.02
ŏ	5.50		40.0			1.53	7.4	42.91	5210	6.91	9.09	9.39	0.02
gage		63.75	42.6	0.375	43	1.64	8.5	46.05	5390	6.76	8.91	9.20	0.03
Ö	6.00	71.32	48.0	0.417	48	1.87	10.9	52.47	5760	6.49	8.57	8.86	0.03
	6.25	75.11	50.8	0.438	50	1.99	12.2	55.73	5960	6.37	8.42	8.70	0.03
3	6.50	78.90	53.6	0.458	53	2.10	13.7	59.02	6150	6.26	8.27	8.55	0.04
N	7.00	86.47	59.5	0.500	58	2.34	16.9	65.67	6570	6.05	8.00	8.27	0.04
	7.25	90.26	61.9	0.521	60	2.46	18.7	69.03	6730	5.95	7.87	8.14	0.04
-	7.50	94.05	64.3	0.542	62	2.58	20.6	72,41	6900	5.89	7.75	8.01	0.05
	4.50	55.85	32.6	0.292	34	1.38	5.1	38,67	4560	8.35	10.55	10.91	0.02
4	5.00	64.68	37.5	0.333	38	1.63	6.9	45.61	5240	7.94	10.10	10.43	0.02
lage	5.25	69.10	40.0	0.354	41	1.75	7.9	49.19	5590	7.76	9.89	10.22	0.02
*	5.50	73.52	42.6	0.375	43	1.88	9.0	52.83	5790	7.59	9.69	10.01	0.03
Ö	6.00	82.35	48.0	0.417	48	2.15	11.6	60.25	6160	7.29	9.33	9.64	0.03
	6.25	86.77	50.8	0.438	50	2.28	13.0	64.02	6360	7.15	9.16	9.47	0.03
3	6.50	91.19	53.6	0.458	53	2.42	14.5	67.83	6550	7.02	9.00	9.30	0.04
3	7.00	100.03	59.5	0.500	58	2.69	17.9	75.53	6970	6.78	8.71	9.00	0.04
	7.25	104.44	61.9	0.521	60	2.83	19.8	79.42	7130	6.67	8.57	8.86	0.04
ш	7.50	108.86	64.3	0.542	62	2.97	21.8	83.33	7300	6.59	8.44	8.72	0.05
	4.50	62.08	32.6	0.292	34	1.53	5.4	42.99	4560	9.20	11.33	11.71	0.02
d)	5.00	72.04	37.5	0.333	38	1.81	7.3	50.72	5240	8.75	10.84	11.20	0.02
×	5.25	77.02	40.0	0.354		1.95	8.3	54.72	5590	8.54	10.62	10.97	0.02
lage	5.50	82.00	42.6	0.375	43	2.10	9.5	58.78	5950	8.35	10.41	10.76	0.03
Š	6.00	91.95	48.0	0.417		2.39	12.1	67.07	6530	8.01	10.02	10.36	0.03
	6.25	96.93	50.8	0.438	50	2.54	13.6	71.29	6730	7.86	9.84	10.17	0.03
0	6.50	101.91	53.6	0.458	53	2.69	15.2	75.55	6920	7.71	9.68	10.00	0.04
3	7.00	111.87	59.5	0.500	58	3.00	18.8	84.17	7340	7.44	9.36	9.67	0.04
	7.25	116.85	61.9	0.521	60	3.16	20.7	88.52	7500	7.32	9.21	9.52	0.04
	7.50	121.83	64.3	0.542	62	3.31	22.8	92.91	7670	7.24	9.07	9.38	0.05
	4.50	62.08	32.6	0.292	34	1.88	6.0	42.99	4560	10.49	12.57	12.99	0.02
4	5.00	72.04	37.5	0.333	38	2.22	8.0	50.72	5240	9.96	12.03	12.43	0.02
gage	5.25	77.02	40.0	0.354	41	2.40	9.2	54.72	5590	9.72	11.78	12.18	0.029
3	5.50	82.00	42.6	0.375	43	2.58	10.5	58.78	5950	9.50	11.55	11.94	0.032
5	6.00	91.95	48.0	0.417	48	2.94	13.4	67.07	6700	9.11	11.13	11.50	0.036
_	6.25	96.93	50.8	0.438	50	3.13	15.0	71.29	7090	8.93	10.94	11.30	0.03
9	6.50	101.91	53.6	0.458	53	3.32	16.8	75.55	7490	8.76	10.75	11.11	0.04
	7.00	111.87	59.5	0.500	58	3.71	20.6	84.17	8150	8.45	10.40	10.75	0.04
	7.25	116.85	61.9	0.521	60	3.90	22.8	88.52	8310	8.31	10.24	10.59	0.047
	7.50	121.83	64.3	0.542	62	4.10	25.1	92.91	8480	8.22	10.09	10.43	0.050

Structural Option Potomac, MD

Consultant: Professor Parfitt 05/07/2010

	FORMULATION OF BUILDING WEIGHT
	SLAB: (DECK + LW CONCRETE) 43 PSF [USD CATALOG P38]
5 SQUARES 5 SQUARES 5 SQUARES FILLER	43 psf (26300 ft2)(7 FLOORS) = 7916.3 K
0000	BEAMS:
O SHEET O SHEET O SHEET O SHEET	114616 16 (7 FLOGE'S) = 802313 16 [RAM TAKEOFF]
3-0235 — 50 3-0236 — 100 3-0237 — 200 3-0137 — 200	=8023 K
8 8 8 8	Cowmis:
COMET	TOTAL: 148.5 K [EAM TAKE OFF]
	BRACES:
	Y DIRECTION: Z 2 (31.79.26) + (27.41.23) + (23.29.23) + (18.99.23)
	+(18.99.23)+(14.51.23)+(11.96.23)]= 13900 16
	X DIRECTION, 4 [2[(5.58-23) + 20(14.78+12.18+9.40+9.40+6.45+6.45)]
	= 12252 lb
	13900 + 12252 = 261501b = 26K
	TOTAL BLOG WT: 7916.3K + 802.3+148.5+26 = 8895K
0	Teaner
	8895K OR ≈ 48 b/ft ²

Structural Option Potomac, MD

Consultant: Professor Parfitt 05/07/2010

Seismic Design Variables					
			ASCE Reference		
Soil Classification		D	Table 20.3-1		
Occupancy		Ш	Table 1-1		
Importance Factor		1.0	Table 11.5-1		
Structural System		Steel System	Table 12.2-1		
Spectral Response Acceleration, Short	Ss	0.156	USGS Website		
Spectral Response Acceleration, 1 s	S ₁	0.051	USGS Website		
Site Coefficient	Fα	1.6	Table 11.4-1		
Site Coefficient	F√	2.4	Table 11.4-2		
MCE Spectral Response Acceleration, Short	Sms	0.2496	Eq. 11.4-1		
MCE Spectral Response Acceleration, 1 s	Sм1	0.1224	Eq. 11.4-2		
Design Spectral Acceleration, Short	S _{DS}	0.166	Eq. 11.4-3		
Design Spectral Acceleration, 1 s	S _{D1}	0.081	Eq. 11.4-4		
Seismic Design Category	S _{DC}	В	Table 11.6-2		
Response Modification Coefficient	R	3	Table 12.2-1		
Approximate Period Parameter	C _t	0.02	Table 12.8-2		
Building Height (E-W)	hn	100.5'			
Structure Period Exponent	k	1.58			
Approximate Period Parameter	х	0.75	Table 12.8-2		
Fundamental Period (E-W)	Т	1.6055 s	Eq. 12.8-7		
Fundamental Period (N-S)	T	1.6672 s	Eq. 12.8-7		
Long Period Transition Period	T∟	8.0 s	Fig. 22-1 <i>5</i>		
Seismic Response Coefficient	Cs	0.025	Eq. 12.8-2		

Structural Option Potomac, MD

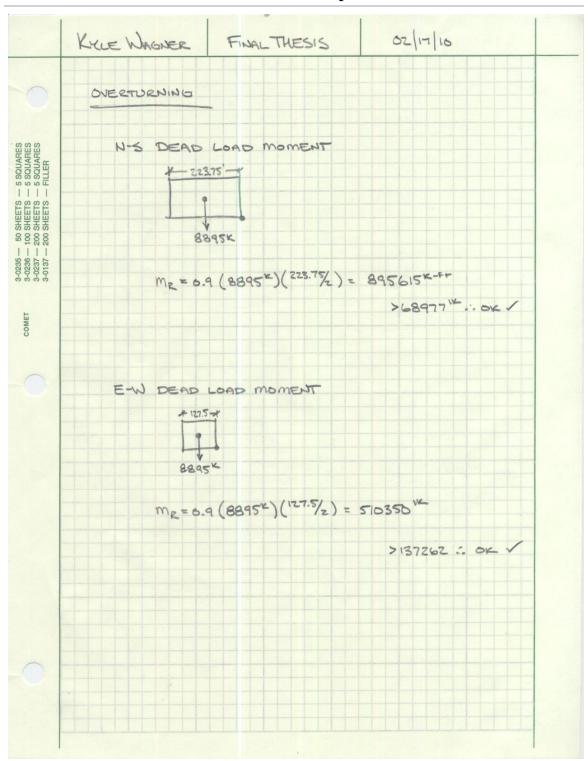
Consultant: Professor Parfitt 05/07/2010

Seismic Calculations								
Level	Story Weight (K)	N-S Height (ft)	Forces (K) Fx	Story Shear Vx	Moments (ft-k) Mx			
Penthouse	211.8	116.5	6	0	721			
Main Roof	423.6	100.5	15	6	1472			
7th Floor	1270.7	86.5	66	21	5673			
6th Floor	1270.7	73.0	50	86	3661			
5th Floor	1270.7	59.5	36	137	2160			
4th Floor	1270.7	46.0	24	173	1112			
3rd Floor	1270.7	32.5	14	197	454			
2nd Floor	1906.1	19.0	11	211	216			
Plaza/First Floor	0.0	0.0	0	222	0			
Total:	8895		222		15469			

$\sum w_i h_i^k$	312756036

Park Potomac	Office 1	Building	"E"
--------------	----------	----------	-----

Structural Option Potomac, MD


Consultant: Professor Parfitt 05/07/2010

Thesis Final Report

Appendix D: Lateral Analysis

Structural Option Potomac, MD

Consultant: Professor Parfitt 05/07/2010

Structural Option Potomac, MD

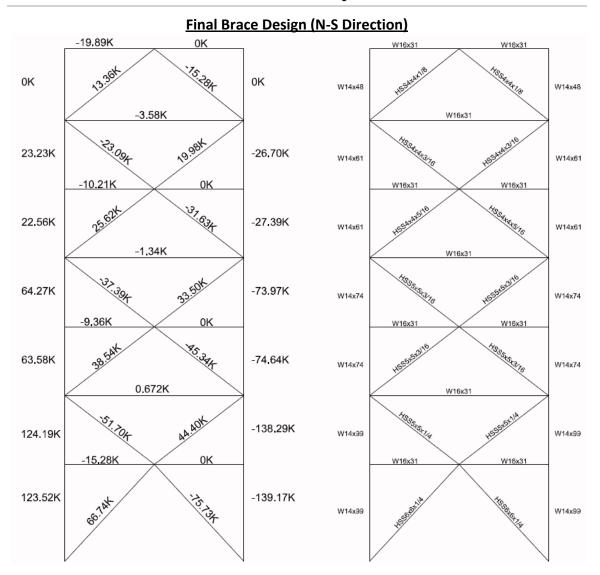
Consultant: Professor Parfitt 05/07/2010

\.			1.
X DI	RECTION BF	COLUMN LOAD	s (Unfactored)
	(2)	(2)	2
T			
D=51 L=36 W=0		D=57 L=42	
D=103 L=69 W=15T		D=115 L=77	
D=154 L=108 W=14T		D=173 L=121	
D=206 L=136 W=40T 46c		D=231 L=162	
D=257 L=171 W=46T 47C		D=289 L=195	
D=369 L=215 W=787 87c		D=347 L=242	
D=362 L= 244 N=787 876		D=406 L=275	

Consultant: Professor Parfitt 05/07/2010

	KYLE WAGNER THESIS BF DESIGN
	X DIRECTION BF COLUMN DESIGN
	STORY
ARES	MAX COMPRESSION
5 SQUARES 5 SQUARES FILLER	1.20+1.6 L = 1.2 (406) + 1.6 (275) = 927.2 K
ETS	MAX TENSION
100 SHEET 200 SHEET 200 SHEET	0.90+1.6W = 0.9 (362)+1.6 (-78) = 201 Compr
3-0236 — 3-0237 — 3-0137 —	USE: WILK 99 (\$P = 995x FOR 19')
666	STORY Z
COMET	max compe
0	1.20+1.61=1.2 (347)+1.6(242) = 863.6*
	MAX TENSION
	0.90 +1.60 = 0.9 (309) +1.6 (-78) = 153.34 compe
	USE: WILL X99 (682=1136x FOR 14')
	STORY 3
	MAX COMPE
	1.20+1.6L = 1.2(289)+1.6(195) = 658.8K
	MAX ENSIGN
	0.90 +1.6W = 0.9(257) +1.6(-40) = 167.3k compr
	USE: WIHXTH (&PA=TOIK FORILL')

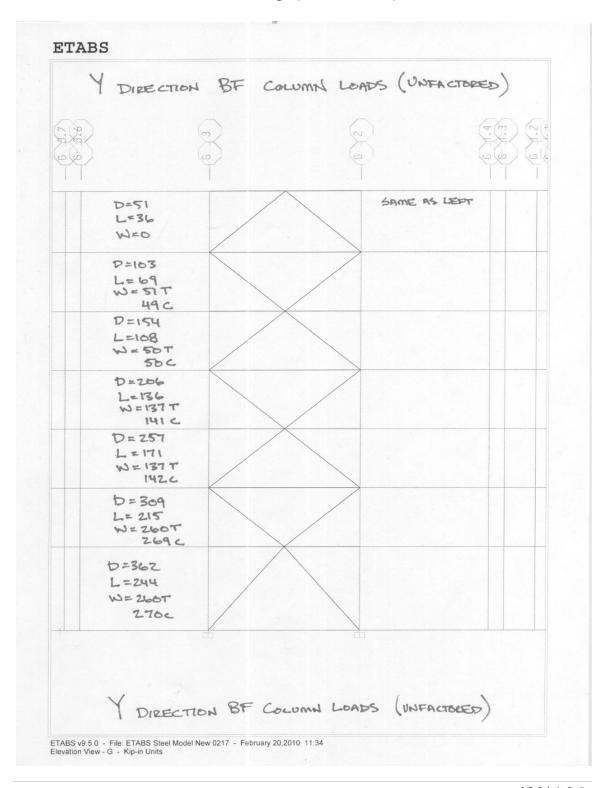
Structural Option


Potomac, MD

Consultant: Professor Parfitt

05/07/2010

	KYLE WAGNER THESIS BF DESIGN
	STORY U
	MAX COMPRESSION
RES	1.20+1.6 = 1.2(231)+1.6(162) = 536.44
5 SQUARES 5 SQUARES 5 SQUARES FILLER	MAX TENSION
0000	090+1.6W=09(206)+1.6(-40)=121 compr
35 — 50 SHEET 36 — 100 SHEET 37 — 200 SHEET 37 — 200 SHEET	USE WIHXTH (\$PA= 701 - FOR 14') SHORY 5
3-0235 3-0236 3-0237	MAX COMPE
сомет	1.20+1.66 = 1.2(173)+1.6(121) = 401.2K
00	TENSION WONT CONTROL BY INSPECTION
0	USE WIYX61 (\$Pn = 572K FOR 14')
	STORY 6
	MAX COMPR
	1.20 +1.6 L = 1.2(115) + 1.6 (77) = 261.2 K
	USE WILLXON (& PRESTER FOR 14')
3	
	Story 7
	MAX COMPR
	1.20+1.66=1.2(57)+1.6(42)=135.64
	USE WIYX 48 (\$Pn = 361 × Foo 141)
0	


Consultant: Professor Parfitt 05/07/2010

Consultant: Professor Parfitt 05/07/2010

Thesis Final Report

Brace Design (E-W Direction)

Structural Option Potomac, MD

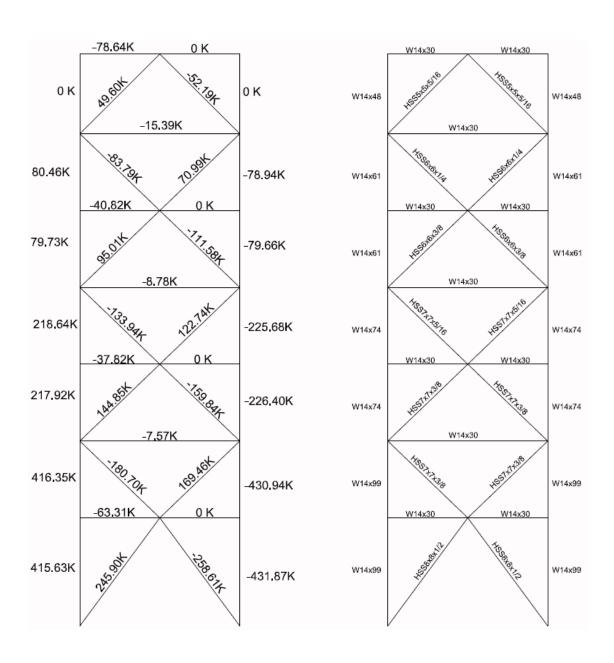
Consultant: Professor Parfitt 05/07/2010

	KYLE WAGNER	THESIS	BF DESIGN
	Y DIRECTION BF	COLUMN DESIGN	
	STORE 1		
70.70	MAX C	omer:	
5 SQUARES 5 SQUARES FILLER	101	20+1.66= 1.2(362)+1	.6 (244) = 824.8 K
	l,	20 + 1.6w = 1.2 (362) +	1.6(270) = 866.4K 4
SHEETS SHEETS SHEETS		TENSION:	
700	6.	9D+1.6W= 0.9 (362)	+1.6(-260)=-90.2×
3-0236 3-0237 3-0137	USE:	W14x90 (\$Pn = 90	02 K FOR 191)
COMET	500ex 2:		
0	MAX C	Compression	
OF	1.2	ZD+1.6W = 1.2(309).	+1.6(269) = 801.ZK
		TENSION	
	0.	90 + 1.6W = 69 (309)	+1.6(-260) = -137.2
	₩:	WI4x90 (\$PA = 102	0 × FOR 14")
	STORY 3:		
	max (Compression	
	1.2	LD+1.6L = 1.2 (257)	+1.6 (171) = 5824
	MAX	TENSION	
	0.	9D+1.6W = 0.9 (257)	41.6 (-137) = 12.1 K comp
	USE:	WI4x68 (\$Pn = 6	39x FOR 141')

Consultant: Professor Parfitt 05/07/2010

	KYLE WAGNER	THESIS	BF DESIGN
56 — 50 SHEETS — 5 SQUARES 58 — 100 SHEETS — 5 SQUARES 57 — 200 SHEETS — FILLER 57 — 200 SHEETS — FILLER	STORY 4		
	MAX	Compression	
	(,	20+1.6W = 1.2(206)+	1.6(141) = 472.8K
		TENSION	
		190+1.6W= 0.9(206	
	USE.	WI4X68 (4PA = 630	1 K FOR 14')
	STORY 5		
3-0236 3-0237 3-0137	XAM	COMPRESSION	
COMET	1.	20+1.61 = 1.2(154)	+1.6(108) = 357.6K
		TENSION	
	6	40+1.60 = 0.9(174) +1.6 (-50) = 58.6 × compr
	Use:	W14x53 (&Pn=4	01 × For 141)
	Store 6		
	MAX	compe	
	ι.	ZD+1.6L = 1.Z(103).	+1.6 (69) = 234 K
		TENSION	
	0	9D+16W = 0.9 (103)+1.6(-51) = 11.1K compr
	USE	. WIHX53 (& Pn =	401× FOR 141)
	Store 7		
	MAX	compr	
	U.	20+1.61 = 1.2(51)+	1.6(36) = 118.8 K
		ENSIDN	
	USE	: WIHXUS (\$PA= 3	SGIK FOR 14

Structural Option Potomac, MD


Consultant: Professor Parfitt 05/07/2010

	Krue WAG	NEZ THESIS	BF PESIGN	
		UPSIBE COLUMNS IN		
	FRANCS	DUE TO SHARES COL	JATION SCIMUL	
5 SQUARES 5 SQUARES 5 SQUARES FILLER	X DIRE	CTION FRAMES		
SHEETS SHEETS SHEETS	(5	E FINAL DESIGN)		
3-0235 — 50 3-0236 — 100 3-0237 — 200 3-0137 — 200				
COMET				
0				
OL				
-				

Consultant: Professor Parfitt 05/07/2010

Thesis Final Report

Final Brace Design (E-W Direction)

Consultant: Professor Parfitt 05/07/2010

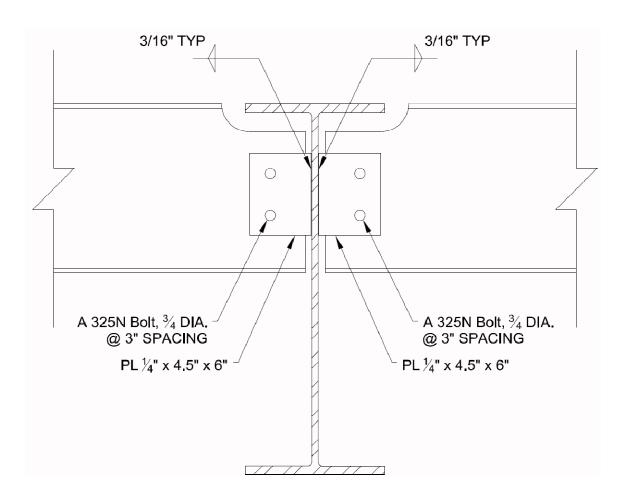
Thesis Final Report

Appendix E: Connection Design

Structural Option

Potomac, MD

Consultant: Professor Parfitt


05/07/2010

DESIGN BEAM -		
	GIRDER SHE	CAR TAB:
16"	2"	
	2	Vo= 19 K
	+	BEAM: WIZXIQ , A992 GIRDER: WZTX84 , A992
		BOUTS: 3/4" \$, A325-N
CONVENTIONAL CO	NFIGURATION	A36 PLATE
2500	Corr	GIRDER
d=12.2	C=6"	tw= 0.460"
+ = 5.350"	e: 149 1600	CED
T = 10.375"	ho=10,2"	
PRELIMINARY N	umber of Bo	
\$ F = 15.9K	(TABLE 7-1)	νο = 19k = 1.2 / 2 Bours
SELECT TRIAL P	LATE THICKNES	S
Max = d	b + 1 = 0.79	5 + 1 = 0.43 = Te-c 1/4" PLATE
TABLE ID	-aa: n=z, tp:	= "4" A325N 24.5" > 19 K
		: OKAY
SIBE WELD		
meron can	FULL WELD	5,75 = 3/16"
MAX FILE	T WELD SIZE	tw=tp-1/16=1/4-1/16=3/16"
t	WELD = 3/16 H	_
	CONVENTIONAL CO BEAM d=12.2" tw=0.255" tf=0.375" PRELIMINARY N Ø F_=15.9K MAX = d MINIMUM twen MAX FILLE	CONVENTIONAL CONFIGURATION BEAM COPE d=12.2" tw=0.235" tf=0.350" T=10.375" No=10.2" PRELIMINARY NUMBER OF BOIL OF = 15.9K (TABLE 7-1) SELECT TRIAL PLATE THICKNES MAX = db + 1 = 0.79 Z 160 TABLE 10-9a: N=Z, tp: SIZE WELD MINIMUM FILLET WELD TWELD = 3/16 (TABLE 1)

Consultant: Professor Parfitt 05/07/2010

	KYLE WAGNER	THESIS	CONNECTION DESIGN
	CHECK COPED		
		N=Z , LEV = LEN = 1	
6 SQUARES 5 SQUARES FILLER	$\phi e_n = (s$	1.8+101) (0.25) = 38.7	K > 19K : ORAW
- 5 SQU - 5 SQU - FILLE		FLEXURAL RUPTURE	
SHEETS SHEETS SHEETS	Snet = t	who = 0.235(10	2.2)2 = 4.075 (0.3
500 1 200	Rn = Fo	Sner = 65(4.075)	_ 40.754
3-0236 3-0237 3-0137		6.5	
COMET	\$Rn = 0.7	5 (40.75) = 30.56	54 > 19K = OKALE
8	01444 1750 84	CKLING FOR COPED	Storman
	CHECK C	62d	
	6	€ 2(12,2)=24.4/	de = = = = = = = = = = = = = = = = = = =
	£ = 2 (=)= 2 ((12.2) = 0.983	6
	ho = 10.	2 = 0.588 ± 1.0	
	K = Z.Z	(ho) = 2.2 (10	.2 \. 5.28
	Fcr = 262	10 (0.255)2 (0.9836)((5.28) = 72.25 zFy=50
	0.	se Fy	
0	ØRn = 0.0	1 FOR SHET & 0.9 (50	5)(4.075) = 28.2× 719×
		e 6.	5 2. OKAK/
	56	E DESIGN BELOW	

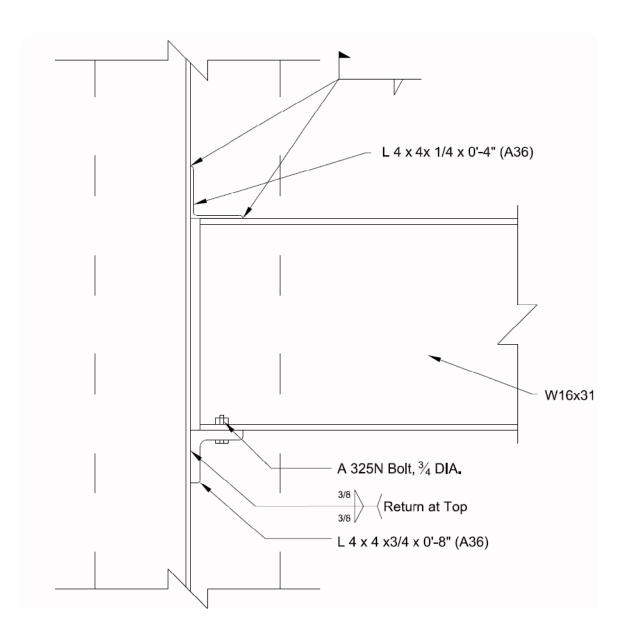
Consultant: Professor Parfitt 05/07/2010

Consultant: Professor Parfitt 05/07/2010

	KYLE WAGNER THE	515	CONNECTIONS	1
	DESIG	IN UNSTIFFENCE	SERT CONNECTION	
E S S	an con	UNECTION AT NORTH	H SIDE OF COLUMN AT	
5 SQUARES 5 SQUARES 5 SQUARES FILLER	BE	EAM: W 16×31		
SHEETS — SHEETS — SHEETS — SHEETS —	4	PLXHIM: MUCH		
50 SHE 100 SHE 200 SHE 200 SHE	V:	= 41K		
3-0235 — 3-0236 — 1 3-0237 — 2 3-0137 — 2	US	SE L 4x4x/4 1	FOR STABILIZING ANGLE	
COMET	LIMIT STATES: BEA	M LOCAL WEB YE	ELDING	
	·8EA	im LOCAL WES	CRIPPLING	
0	·5e	AT ANGLE FLEXU	DRE	
	• An	GIE SHEAR YIEL	DING	
	· WE	LD RUPTURE		
	BEAM: WILL X31			
	d = 15.9"	te= 0	.440	
	tw=0.275	Kdes=	0.842	
	b _F = 5.53	Kdet=	1 1/8	
	· BEAM LOCAL WEB	YIELDING		
	Nmin = RU 1.0Fytw	- 2.5 Kdes		
	1.0(20)(1 = 41K	_ 2.5 (0.84	12) = 0.879" 4 Kdet :. USE Kdet = 1.125	п

Structural Option Potomac, MD

Consultant: Professor Parfitt 05/07/2010


	KYLE WAGNER	THESIS	CONNECTIONS	2
	BEAM LOCAL	WEB CRIPPLING		
5 SQUARES FILLER		(tr) 2 Ru 0.75(0.4)t	2 TEFYWELF	
— 200 SHEETS —			0.275)2 29000(50)(0.440)	
3-0137 3-0137		SOMPTION → 2.00	= 0.12 40.2 4.6	DEALL
	· SEAT ANGLE	1/2 ANGLE (8" LE E FLEXURE + 0.75 - 0.5 - 3/8 = 1		
	= 5.8		2 (2) 1 2 1 1 1 1 2	
			6.9 (36)(8")(1/2)2 = 1	41K : No
		1 x 3/4" x 8" L 0-9 (36)(8)(3/1 4(0-875)	W2 = 41.7 × > 41 ×.	- OKAK
		100-215)		

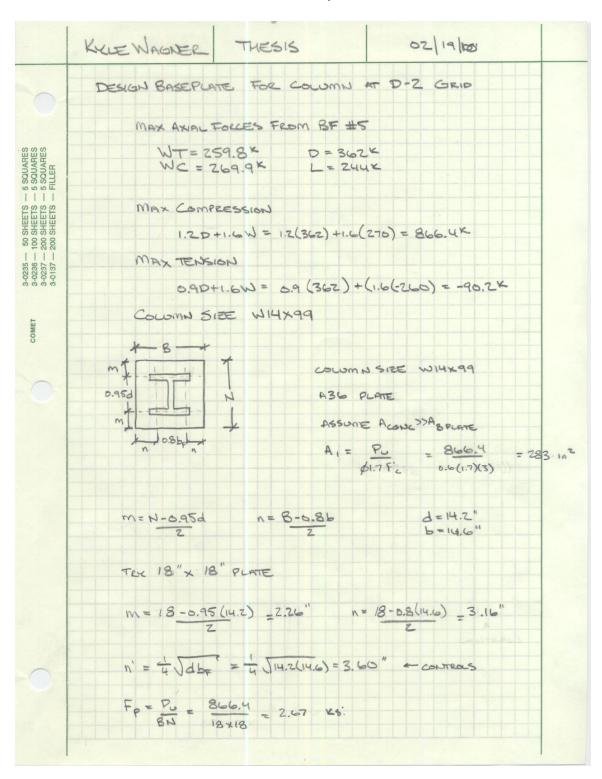
Structural Option Potomac, MD

Consultant: Professor Parfitt 05/07/2010

	KYLE WAGNER	THESIS	CONNECTIONS	3
	· ANOLE SHE	AR YIELDING		
		1.0(0.6Fy) Lata		
5 SQUARES 5 SQUARES 5 SQUARES FILLER		1.0 (0.6 (36)) (8)(3	o/u) = 129.6 × 741 × .: 0.	KALE
	·WELD RUP	TURE		
SHEETS SHEETS SHEETS	ANGLE	= 0°		
1 200	K = 0.	0		
3-0235 3-0236 3-0237 3-0137	e = 1/2	+ 3 = 2.0 + 3 = 1	75"	
сомет	a= <u>e</u> L	1.75" 5.4375		
	c = 2.5	Z TABLE 8-4]		
	Dmin	= RU = 0.	41K = 5.42 (VILLEY OF WELD
		3/8" FILLET WELDS		
	TUSE L 45	14 × 3/4" × 8" L W	3/3" FILLET WELDS	
		L4x4x14x4" C 579		
	V		V	6
				1

Consultant: Professor Parfitt 05/07/2010

Structural Option

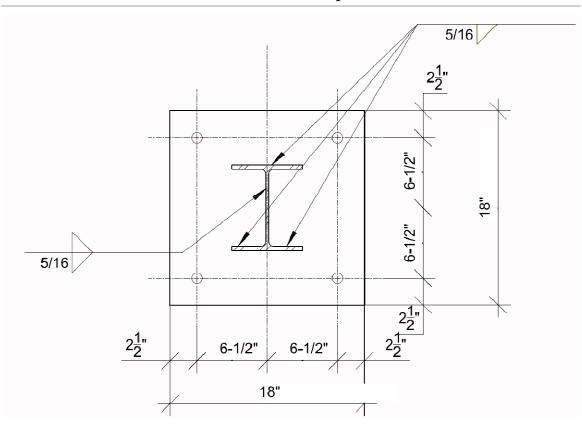

Potomac, MD

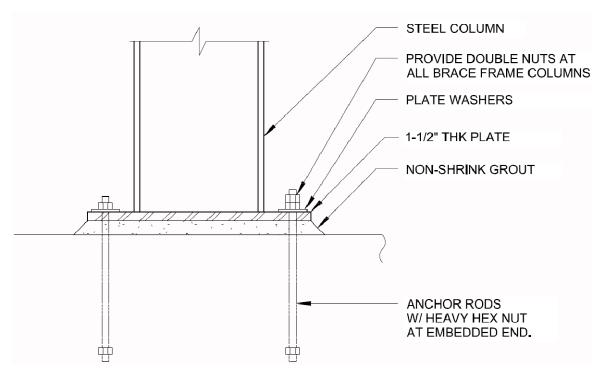
Consultant: Professor Parfitt

05/07/2010

Thesis Final Report

Column Baseplate



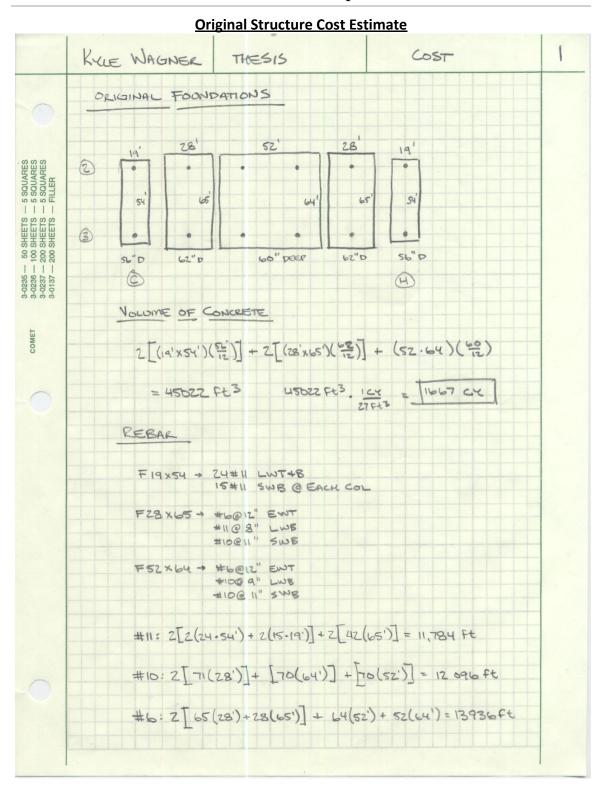

Structural Option Potomac, MD

Consultant: Professor Parfitt 05/07/2010

	KYLE WAGNER	THESIS	02/19/10
	tp= 1.49 (3.60	$\sqrt{\frac{2.67}{36}} = 1.46''$	→ 1.5"
	: USE 18"	x 18" PLATE , 1/2	"THICK
TS — FILLER		DUOUT STRENGTH	
— 200 SHEETS		DESIGNED TO RES	
3-0137	FOR BASE	PLATE	

Consultant: Professor Parfitt 05/07/2010

Park Potomac	Office	Building "E"	
--------------	--------	---------------------	--


Structural Option Potomac, MD

Consultant: Professor Parfitt 05/07/2010

Thesis Final Report

Appendix E: Cost/Schedule Analysis

Consultant: Professor Parfitt 05/07/2010

Structural Option Potomac, MD

Consultant: Professor Parfitt 05/07/2010

	KYLE WAGNER	THESIS	Cost	2	
	DRIGINAL FOUN	DATIONS			
	SFCA FOR FO				
5 SQUARES 5 SQUARES FILLER		1]+2[54, 25].			
	© 2[28'·(62)]+2[651·(2)]	= 9618=		
3-0235 — 50 SHEETS 3-0236 — 100 SHEETS 3-0137 — 200 SHEETS		(60)] + 2[64. (60)]			
	TOTAL: 2(681.3) + 2(961)	+ 1160 = 4445 SF		
сомет					

Structural Option Potomac, MD

Consultant: Professor Parfitt 05/07/2010

	KKLE WAGNER	THESIS	COST	
	DRIGINAL DESIG	DN-SLABS		
	SLAB CONC VOI	wme: 26000 . 7"	= 15167 Ft3 = 562 CY	
5 SQUARES 5 SQUARES FILLER		: 7(562) = 3934		
		AREA: ZLOOD S		
100 SHEETS 200 SHEETS 200 SHEETS	CUEB FORMS	: 2[225'(7)+	125'(7)] = 408 SFCA	
3-0236 — 3-0237 — 3-0137 —		35 K/Ft REQUIRED E		
	× 26.5 ×/11	ENDON (RICHARD A	PRIE PRESENTATION)	
COMET		125' = 4375K		
	4375K	1 TENDON = 165	TENDONS PER FLOOR	
		25' LENOTH) = 37125		
		JU /2" STENDON		
	L> 1	19305 No REINFORCE	ING STEEL PER FLOOR	
	135135	15 TOTAL WT		
	REINFORCING	:		
		OP FULL LENGTH N-St		
	USE NO	S' AVERAGE WIDTH >	110. (12) . 225' = 24750 F+	
		D EACH BAK IN E-W D		
		(5.116') = 3850 P		1
	Bortom M	NAT #4@30" E-W	Воттом	
		(12") . 110 (12 30)		
	TOTAL LE	NISTH : 7 724750+38	50+19800] = 338800 Ft	-

Structural Option Potomac, MD

Consultant: Professor Parfitt 05/07/2010

	KYCLE WAGNER THE	E515	COST	4
	ORIGINAL DESIGN	- BEAMS		
0	8 BEAMS: AVG	110' LONG		
S S S S S S S S S S S S S S S S S S S	VOLUME OF CONC	: 8 110' (13)	(12)] = 212 CY PERFL	.00R
— 5 SQUARES — 5 SQUARES — FILLER	TOTAL VOLUME	= 1483 CY		
SHEETS SHEETS SHEETS	REINFORCING			
- 100 S - 200 S - 200 S	4#9 BOTTOM BI	xes		
3-0236 3-0237 3-0137	8[1101-4]	= 3520 Ft	PER FLOOR	
	5#9 TOP BARS			
COMET	8 [110'-5]	= 4400 ft	PER FLOOR	
	STIREOPS #3@:			
	8[110'(12/3).	14'] = 4928	of PERFLORE	
	TOTAL #9 = 7 (3520+4400) =	55440 Pt	
	TOTAL #3 STIRE	= 7(49780) =	344960Ft	
	PT TENDONS			
	\$ 780 K /BEAM			
	26.5 K/TENDOR	J -> 30 TENE	oons per beam	
	8(110')(30)	= 26400'		
	Assumino 1/2	" & TEMPON -	0.52 10/4	
	13728	5 16 PER FLOO	2	
	96096 16 TI	OTAL WT		

Structural Option Potomac, MD

Consultant: Professor Parfitt 05/07/2010

	KYLE WAGNER	THESIS	COST	5
	DEGINAL DESI	SANCE AND ADDRESS OF THE PROPERTY OF THE PROPE		
		· -> (32) 24" x24"		
E S S S S S S S S S S S S S S S S S S S	FLOOR 1-3:	5000 psi. FL00	e 4-7 -> 4000 ps:	
5 SQUARES 5 SQUARES 5 SQUARES FILLER		1000 psi Conc:		
SHEETS SHEETS SHEETS SHEETS	[18'+12'+17	$2'](32)(2'\times2') = 537$	16 Ft3 = 199.1 CY	
200		4000 ps: conc:		
3-0235 — 3-0236 — 3-0237 — 3-0137 —	I'z'+12'+12	+13'](32)(2'x2') = 62	272 ft3 = 233 cx	
T3	COLUMN FOR	EMWORK AREA:		
СОМЕТ	[18'+12'+17	2'+12'+12'+12'+13'](2')(4)	32) = 23296 SF	
	REBAR			
		(12) (32) + $(12'+12'+12')$	87/(32) = [16512 FE]	
		+12'+13')(8)](32) = 947		
		#3@18" ×7.5' PER	- N	
	#3: (18'	+5(12)+13')(12/8)(7.5')	(32) = 14560 Ft	

Park Potomac Office Building "E"

Structural Option Potomac, MD

Consultant: Professor Parfitt 05/07/2010

			St	ructural C	oncrete Est	imate					Ų
Mat Foundations											
IVIAL FOUNDATIONS					Unit Mat'l		Unit Labor	1	Unit Equip.		Total Item
Item	Size	Depth	Quantity	Total CY	Cost	Mat'l Cost	Cost	Labor Cost	Cost	Equip. Cost	Cost
Normal Weight Concrete, 3000 PSI	Varies	Varies	5	1667	\$101.00	\$168,367.00			40000		\$168,367.0
Foundation Matsover 20 CY, Direct chute	Varies	Varies	5	1667			\$4.53	\$7,551.51	\$0.15	\$250.05	\$7,801.5
	e e				Unit Mat'l	n e	Unit Labor		Unit Equip.		Total Item
Item	Size	Depth	Quantity	SFCA	Cost	Mat'l Cost	Cost	Labor Cost	Cost	Equip. Cost	Cost
Forms in Place, plywood, 2 use	Varies	Varies	5	4445	\$1.80	\$8,001.00	\$4.91	\$21,802.73			\$29,803.7
					11 1. 22						
	LDC /FT	Total		100	Unit Mat'l	#4	Unit Labor	1-1-0-1	Unit Equip.	F	Total Item
Item Footing #6 Rebar	1.502	Length 13936	Quantity	LBS 20931.872	Cost \$0.75	Mat'l Cost \$15,698.90	Cost \$0.34	\$7,116.84	Cost	Equip. Cost	\$22,815.7
Footing #10 Rebar	4.303	12096	100	52049.088	\$0.70	\$36,434.36	\$0.34	\$10,409.82			\$46,844.1
Footing #11 Rebar	5.313	11784	1370	62608.392	\$0.70	\$43,825.87	\$0.20	\$12,521.68			\$56,347.5
Elevated Slabs	-	-			11 1. 24 .8						
	a (cr)	Donale		Total CY	Unit Mat'l	Mat'l Cost	Unit Labor	1-b C1	Unit Equip.	Facility Count	Total Item
Normal Weight Concrete, 5000 psi	Area (SF) 26000	Depth 7"	Quantity 7	3934	\$111.00	\$436,674.00	Cost	Labor Cost	Cost	Equip. Cost	\$436,674.0
Placing elevated slab, All floors pumped	26000	7"	7	3934	3111.00	3430,074.00	\$13.55	\$53,305.70	\$4.94	\$19,433.96	\$72,739.6
								***************************************		****	**********
					Unit Mat'l		Unit Labor		Unit Equip.		Total Item
Item	LBS/FT	Length	Quantity	LBS	Cost	Mat'l Cost	Cost	Labor Cost	Cost	Equip. Cost	Cost
Stressing Tendons	0.52	259875	074	135135	\$2.33	\$314,864.55	\$2.18	\$294,594.30	\$0.09	\$12,162.15	\$621,621.0
					I baid # 0		I locid / 6		Unit Facilia		Tatal Item
Itam	IRC/FT	torret	Ougantitu	LBS	Unit Mat'l	Matt Cost	Unit Labor	Inhar Cont	Unit Equip.	Fouin Cost	Total Item
Item Reinforcement, #4 Bars	LBS/FT 0.668	Length 338800	Quantity	226318.4	Cost \$0.83	Mat'l Cost \$186,712.68	Cost \$0.25	\$55,448.01	Cost	Equip. Cost	\$242,160.69
removementy 114 burs	0.000	330000		220310.4	30.63	\$150,712.00	90.23	355,446.01			9242,100.0.
					Unit Mat'l	*	Unit Labor		Unit Equip.		Total Item
Item	Area (SF)	Depth	Quantity	SFCA	Cost	Mat'l Cost	Cost	Labor Cost	Cost	Equip. Cost	Cost
Formwork, Job built, 2 use	26000	7"	7	182000	\$2.49	\$453,180.00	\$3.59	\$653,380.00			\$1,106,560.00
Curb Forms, wood, 6" to 12", 2 use	26000	7"	7	408	\$0.70	\$285.60	\$5.90	\$2,407.20			\$2,692.80
					Unit Mat'l		Unit Labor		Unit Equip.		Total Item
Item	Area (SF)	Capacity	Quantity		Cost	Mat'l Cost	Cost	Labor Cost	Cost	Equip. Cost	Cost
#3 Post Shore, 3800# capacity	26000	3800	600		\$540.00	\$324,000.00	COST	TODG COST	COST	Equip. Cost	\$324,000.00
,	20000	5500		7.0	ÇD TOTO	yoz nadalad					goz necelic
					Unit Mat'l		Unit Labor		Unit Equip.		Total Item
Item	Area (SF)		-	SFCA	Cost	Mat'l Cost	Cost	Labor Cost	Cost	Equip. Cost	Cost
Reshoring, Assume 2 Floors	26000			52000	\$0.50	\$26,000.00	\$0.46	\$23,920.00			\$49,920.00
B											
Beams					Unit Mat'l		Unit Labor		Unit Equip.		Total Item
Item	Size	Length	Quantity	Total CY	Cost	Mat'l Cost	Cost	Labor Cost	Cost	Equip. Cost	Cost
Normal Weight Concrete, f c=5000 psi	13"x72"	6160	-	1483	\$111.00	\$164,613.00					\$164,613.00
Placing beams, All levels pumped	13"x72"	6160	351	1483			\$24.00	\$35,592.00	\$8.80	\$13,050.40	\$48,642.40
						Ť	1				
	100020		227 32	100000	Unit Mat'l	1000 Table	Unit Labor		Unit Equip.	2 2 2	Total Item
Item	LBS/FT	Length	Quantity	LBS	Cost	Mat'l Cost	Cost	Labor Cost	Cost	Equip. Cost	Cost
Reinforcing, #9 Bars Reinforcing, #3 Bars	3.4 0.376	55440 344960	101	188496 129704.96	\$0.78 \$0.76	\$146,084.40 \$98,900.03	\$0.22 \$0.39	\$41,940.36 \$50,260.67			\$188,024.76
mennoralig, modera	0.3/0	344300		123/04.36	30.76			330,200.07			
						7/	90.03				\$149,100.70
Item					Unit Mat'l	37	Unit Labor		Unit Equip.		Total Item
	LBS/FT	Length	Quantity	LBS	Unit Mat'l Cost	Mat'l Cost		Labor Cost	Unit Equip. Cost	Equip. Cost	
Stressing Tendons	LBS/FT 0.52	Length 184800	Quantity	LBS 96096	Control of the Contro		Unit Labor			Equip. Cost	Total Item Cost
Stressing Tendons					Cost	Mat'l Cost	Unit Labor Cost	Labor Cost		Equip. Cost	Total Item
					Cost \$2.33	Mat'l Cost	Unit Labor Cost \$2.18	Labor Cost	Cost	Equip. Cost	Total Item Cost \$433,392.96
Stressing Tendons Columns	0.52	184800		96096	Cost \$2.33 Unit Mat1	Mat'l Cost \$223,903.68	Unit Labor Cost \$2.18 Unit Labor	Labor Cost \$209,489.28	Cost Unit Equip.		Total Item Cost \$433,392.96 Total Item
Stressing Tendons	0.52 Size	184800 Length	Quantity	96096 Total CY	Cast \$2.33 Unit Mat'l Cast	Mat'l Cost \$223,903.68 Mat'l Cost	Unit Labor Cost \$2.18	Labor Cost	Cost	Equip. Cost	Total Item Cost \$433,392.96 Total Item Cost
Stressing Tendons Columns Item	0.52	184800		96096	Cost \$2.33 Unit Mat1	Mat'l Cost \$223,903.68	Unit Labor Cost \$2.18 Unit Labor	Labor Cost \$209,489.28	Cost Unit Equip.		Total Item
Stressing Tendons Columns Item Normal Weight Concrete, 4000 psi	0.52 Size 24"x24"	Length Varies	Quantity 32	96096 Total CY 233	Cost \$2.33 Unit Mat'l Cost \$106.00	Mat'l Cost \$223,903.68 Mat'l Cost \$24,698.00	Unit Labor Cost \$2.18 Unit Labor	Labor Cost \$209,489.28	Cost Unit Equip.		Total Item Cost \$433,392.96 Total Item
Stressing Tendons Columns Item Normal Weight Concrete, 4000 psi Normal Weight Concrete, 5000 psi	0.52 Size 24"x24" 24"x24"	Length Varies Varies	Quantity 32 32	96096 Total CY 233 200	Cost \$2.33 Unit Mat'l Cost \$106.00 \$111.00	Mat'l Cost \$223,903.68 Mat'l Cost \$24,698.00	Unit Labor Cost \$2.18 Unit Labor Cost \$23.50	Labor Cost \$209,489.28 Labor Cost	Unit Equip. Cost	Equip. Cost	Total Item Cost \$433,392.96 Total Item Cost \$24,698.06 \$22,200.06 \$13,899.36
Columns Item Normal Weight Concrete, 4000 psi Normal Weight Concrete, 5000 psi Placing concrete, 24" columns	0.52 Size 24"x24" 24"x24" 24"x24"	Length Varies Varies Varies	Quantity 32 32 32	96096 <i>Total CY</i> 233 200 433	Cost \$2.33 Unit Mat' Cost \$105.00 \$111.00 Unit Mat'	Mat'l Cost \$223,903.68 Mat'l Cost \$24,698.00 \$22,200.00	Unit Labor Cost \$2.18 Unit Labor Cost \$23.50 Unit Labor	Labor Cost \$209,489,28 Labor Cost \$10,175.50	Cost Unit Equip. Cost \$3.60 Unit Equip.	Equip. Cost \$3,723.80	Total I tem Cost \$433,392.90 Total I tem Cost \$24,698.00 \$22,200.00 \$13,899.30 Total I tem
Stressing Tendons Columns Item Normal Weight Concrete, 4000 psi Normal Weight Concrete, 5000 psi Placing concrete, 24" columns	0.52 Size 24"x24" 24"x24" 24"x24" Size	Length Varies Varies Varies Length	Quantity 32 32 32 Quantity	96096 Total CY 233 200 433	Cost \$2.33 Unit Mat'l Cost \$106.00 \$111.00 Unit Mat'l Cost	Mat1 Cost \$223,903.68 Mat1 Cost \$24,658.00 \$22,200.00 Mat1 Cost	Unit Labor Cost \$2.18 Unit Labor Cost \$23.50 Unit Labor Cost	Labor Cost \$10,175.50 Labor Cost	Unit Equip. Cost	Equip. Cost	Total Item Cost \$433,392.96 Total Item Cost \$24,698.06 \$22,200.06 \$13,899.36 Total Item Cost
Columns Item Normal Weight Concrete, 4000 psi Normal Weight Concrete, 5000 psi Placing concrete, 24" columns	0.52 Size 24"x24" 24"x24" 24"x24"	Length Varies Varies Varies	Quantity 32 32 32	96096 <i>Total CY</i> 233 200 433	Cost \$2.33 Unit Mat' Cost \$105.00 \$111.00 Unit Mat'	Mat'l Cost \$223,903.68 Mat'l Cost \$24,698.00 \$22,200.00	Unit Labor Cost \$2.18 Unit Labor Cost \$23.50 Unit Labor	Labor Cost \$209,489,28 Labor Cost \$10,175.50	Cost Unit Equip. Cost \$3.60 Unit Equip.	Equip. Cost \$3,723.80	Total Item Cost \$433,392.96 Total Item Cost \$24,698.06 \$22,200.06 \$13,899.36 Total Item Cost
Stressing Tendons Columns Item Normal Weight Concrete, 4000 psi Normal Weight Concrete, 5000 psi Placing concrete, 24" columns	0.52 Size 24"x24" 24"x24" 24"x24" Size	Length Varies Varies Varies Length	Quantity 32 32 32 Quantity	96096 Total CY 233 200 433	Cost \$2.33 Unit Mat'l Cost \$106.00 \$111.00 Unit Mat'l Cost \$1.37	Mat1 Cost \$223,903.68 Mat1 Cost \$24,658.00 \$22,200.00	Unit Labor Cost \$2.18 Unit Labor Cost \$23.50 Unit Labor Cost \$5.60	Labor Cost \$10,175.50 Labor Cost	Cost Unit Equip. Cost \$6.60 Unit Equip. Cost	Equip. Cost \$3,723.80	Total Item Cost \$433,392.9(Total Item Cost \$24,698.0(\$13,899.3(Total Item Cost \$162,373.1:
Stressing Tendons Columns Item Normal Weight Concrete, 4000 psi Normal Weight Concrete, 5000 psi Placing concrete, 24" columns	0.52 Size 24"x24" 24"x24" 24"x24" Size 24"x24"	Length Varies Varies Varies Length 7"	Quantity 32 32 32 32 32 Quantity 32	7 otal CY 233 200 433 SFCA 23296	Cost \$2.33 Unit Mat' Cost \$106.00 \$111.00 Unit Mat' Cost \$1.37 Unit Mat'	Mat1 Cost \$223,903.68 Mat1 Cost \$24,698.00 \$22,200.00 Mat1 Cost \$31,915.52	Unit Labor Cost \$2.18 Unit Labor Cost \$23.50 Unit Labor Cost \$5.60 Unit Labor	Labor Cost \$209,489.28 Labor Cost \$10,175.50 Labor Cost \$130,457.60	Cost Unit Equip. Cost \$8.60 Unit Equip. Cost Unit Equip.	Equip. Cost \$3,723.80 Equip. Cost	Total Item Cost \$433,392.96 Total Item Cost \$24,698.06 \$22,200.06 \$13,899.36 Total Item Cost \$162,373.1: Total Item
Stressing Tendons Columns Item Normal Weight Concrete, 4000 psi Normal Weight Concrete, 5000 psi Placing concrete, 24" columns Item Formwork, Job built, 2 use Item Reinforcing, #10 Bars	0.52 Size 24"x24" 24"x24" 24"x24" Size	Length Varies Varies Varies Length	Quantity 32 32 32 Quantity	96096 Total CY 233 200 433	Cost \$2.33 Unit Mat'l Cost \$106.00 \$111.00 Unit Mat'l Cost \$1.37	Mat1 Cost \$223,903.68 Mat1 Cost \$24,658.00 \$22,200.00	Unit Labor Cost \$2.18 Unit Labor Cost \$23.50 Unit Labor Cost \$5.60	Labor Cost \$10,175.50 Labor Cost	Cost Unit Equip. Cost \$6.60 Unit Equip. Cost	Equip. Cost \$3,723.80	Total Item Cost \$433,392,96 Total Item Cost \$24,698,06 \$22,200,06 \$13,899,36 Total Item Cost \$162,373,12 Total Item Cost
Stressing Tendons Columns Item Normal Weight Concrete, 4000 psi Normal Weight Concrete, 5000 psi Placing concrete, 24" columns Item Formwork, Job built, 2 use Item Reinforcing, #10 Bars Reinforcing, #3 Bars	0.52 Size 24"x24" 24"x24" 24"x24" Size 24"x24" LBS/FT 4.303 2.670	Length Varies Varies Varies Varies Length 7" Length 16512 9472	Quantity 32 32 32 32 32 Quantity 32 Quantity	7 otal CY 233 200 433 SFCA 23296 LBS 71051.136 25290.24	Cost \$2,33 Unit Mat' Cost \$110.00 Unit Mat' Cost \$1.37 Unit Mat' Cost Cos	Mat1 Cost \$223,903.68 Mat1 Cost \$24,658.00 \$22,200.00 Mat1 Cost \$31,915.52 Mat1 Cost \$55,064.63 \$15,959.34	Unit Labor Cost \$2.18 Unit Labor Cost \$23.50 Unit Labor Cost \$5.60 Unit Labor Cost Unit Labor Cost	Labor Cost \$209,489,28 Labor Cost \$10,175.50 Labor Cost \$130,457.60 Labor Cost \$22,025.85 \$7,839,37	Cost Unit Equip. Cost \$8.60 Unit Equip. Cost Unit Equip.	Equip. Cost \$3,723.80 Equip. Cost	Total Item Cost \$433,392,96 Total Item Cost \$24,698.06 \$22,200.06 \$13,899.36 Total Item Cost \$162,373.1: Total Item Cost \$77,090.46 \$27,499.9
Stressing Tendons Columns Item Normal Weight Concrete, 4000 psi Normal Weight Concrete, 5000 psi Placing concrete, 24" columns Item Formwork, Job built, 2 use Item Reinforcing, #10 Bars	0.52 Size 24"x24" 24"x24" 24"x24" Size 24"x24" LBS/FT 4.303	Length Varies Varies Varies Varies Length 7" Length 16512	Quantity 32 32 32 Quantity 32 Quantity -	7otal CY 233 200 433 SFCA 23296 1BS 71051.136	Cost \$2.33 Unit Mat'l Cost \$110.00 Unit Mat'l Cost \$1.37 Unit Mat'l Cost \$0.78	Mat1 Cost \$223,903.68 Mat1 Cost \$24,658.00 \$22,200.00 Mat1 Cost \$31,915.52 Mat1 Cost \$55,064.63	Unit Labor Cost \$2.18 Unit Labor Cost \$23.50 Unit Labor Cost Unit Labor Cost \$5.60 Unit Labor So.31	Labar Cost \$209,489,28 Labar Cost \$10,175,50 Labar Cost \$130,457,60 Labar Cost \$22,025,85	Cost Unit Equip. Cost \$8.60 Unit Equip. Cost Unit Equip.	Equip. Cost \$3,723.80 Equip. Cost	Total Item Cost \$433,392.9 Total Item Cost \$24,698.0 \$22,200.0 \$13,899.3 Total Item Cost \$162,373.1 Total Item Cost \$77,090.4
Stressing Tendons Columns Item Normal Weight Concrete, 4000 psi Normal Weight Concrete, 5000 psi Placing concrete, 24" columns Item Formwork, Job built, 2 use Item Reinforcing, #10 Bars Reinforcing, #3 Bars Reinforcing, #3 Bars	0.52 Size 24"x24" 24"x24" 24"x24" Size 24"x24" LBS/FT 4.303 2.670	Length Varies Varies Varies Varies Length 7" Length 16512 9472	Quantity 32 32 32 32 Quantity 32 Quantity	7 otal CY 233 200 433 SFCA 23296 LBS 71051.136 25290.24	Cost \$2.33 Unit Mat1 Cost \$106.00 \$111.00 Unit Mat7 Cost \$1.37 Unit Mat7 Cost \$0.788	Mat7 Cost \$223,903.68 Mat7 Cost \$24,698.00 \$22,200.00 Mat7 Cost \$31,915.52 Mat7 Cost \$55,064.63 \$19,599.94 \$4,242.78	Unit Labor Cost \$2.18 Unit Labor Cost \$23.50 Unit Labor Cost \$5.60 Unit Labor Cost \$5.60 Unit Labor So.31	Labor Cost \$209,489,28 Labor Cost \$10,175,50 Labor Cost \$130,457,60 Labor Cost \$22,025,85 \$7,839,97 \$3,250,52	Cost Unit Equip. Cost \$8.60 Unit Equip. Cost Unit Equip.	Equip. Cost \$3,773.80 Equip. Cost	Total Item Cost \$433,392.9 Total Item Cost \$24,698.0 \$22,200.0 \$13,899.3 Total Item Cost \$162,373.1 Total Item Cost \$77,090.4 \$27,439.9 \$7,493.3
Stressing Tendons Columns Item Normal Weight Concrete, 4000 psi Normal Weight Concrete, 5000 psi Placing concrete, 24" columns Item Formwork, Job built, 2 use Item Reinforcing, #10 Bars Reinforcing, #8 Bars Reinforcing, #8 Bars Reinforcing, #8 Bars	0.52 Size 24"x24" 24"x24" 24"x24" Size 24"x24" LBS/FT 4.303 2.670	Length Varies Varies Varies Varies Length 7" Length 16512 9472	Quantity 32 32 32 32 Quantity 32 Quantity	7 otal CY 233 200 433 SFCA 23296 LBS 71051.136 25290.24	Cost \$2.33 Unit Mat1 Cost \$106.00 \$111.00 Unit Mat7 Cost \$1.37 Unit Mat7 Cost \$0.788	Mat1 Cost \$223,903.68 Mat1 Cost \$24,658.00 \$22,200.00 Mat1 Cost \$31,915.52 Mat1 Cost \$55,064.63 \$15,959.34	Unit Labor Cost \$2.18 Unit Labor Cost \$23.50 Unit Labor Cost \$5.60 Unit Labor Cost \$5.60 Unit Labor So.31	Labor Cost \$209,489,28 Labor Cost \$10,175.50 Labor Cost \$130,457.60 Labor Cost \$22,025.85 \$7,839,37	Cost Unit Equip. Cost \$8.60 Unit Equip. Cost Unit Equip.	Equip. Cost \$3,723.80 Equip. Cost	Total Item Cost \$433,392.9 Total Item Cost \$24,698.0 \$22,200.0 \$13,899.3 Total Item Cost \$162,373.1 Total Item \$77,090.4 \$27,439.9 \$7,493.3
Stressing Tendons Columns Item Normal Weight Concrete, 4000 psi Normal Weight Concrete, 5000 psi Placing concrete, 24" columns Item Formwork, Job built, 2 use Item Reinforcing, #10 Bars Reinforcing, #3 Bars Reinforcing, #3 Bars Subtotals Adjusted for Location (8.89)	0.52 Size 24"x24" 24"x24" 24"x24" Size 24"x24" LBS/FT 4.303 2.670	Length Varies Varies Varies Varies Length 7" Length 16512 9472	Quantity 32 32 32 32 Quantity 32 Quantity	7 otal CY 233 200 433 SFCA 23296 LBS 71051.136 25290.24	Cost \$2.33 Unit Mat1 Cost \$106.00 \$111.00 Unit Mat7 Cost \$1.37 Unit Mat7 Cost \$0.788	Mat7 Cost \$223,903.68 Mat7 Cost \$24,698.00 \$22,200.00 Mat7 Cost \$31,915.52 Mat7 Cost \$55,064.63 \$19,599.94 \$4,242.78	Unit Labor Cost \$2.18 Unit Labor Cost \$23.50 Unit Labor Cost \$5.60 Unit Labor Cost \$5.60 Unit Labor So.31	Labor Cost \$209,489,28 Labor Cost \$10,175,50 Labor Cost \$130,457,60 Labor Cost \$22,025,85 \$7,839,97 \$3,250,52	Cost Unit Equip. Cost \$8.60 Unit Equip. Cost Unit Equip.	Equip. Cost \$3,773.80 Equip. Cost	Total Item Cost \$433,392.9 Total Item Cost \$24,698.0 \$22,200.0 \$13,899.3 Total Item Cost \$162,373.1 Total Item Cost \$77,090.4 \$27,493.9 \$4,507,375.8 \$4,507,375.8
Stressing Tendons Columns Item Normal Weight Concrete, 4000 psi Normal Weight Concrete, 5000 psi Placing concrete, 24" columns Item Formwork, Job built, 2 use Item Reinforcing, #10 Bars Reinforcing, #8 Bars Reinforcing, #8 Bars Adjusted for Location (9.89) Design Contingency (1.5%)	0.52 Size 24"x24" 24"x24" 24"x24" Size 24"x24" LBS/FT 4.303 2.670	Length Varies Varies Varies Varies Length 7" Length 16512 9472	Quantity 32 32 32 32 Quantity 32 Quantity	7 otal CY 233 200 433 SFCA 23296 LBS 71051.136 25290.24	Cost \$2.33 Unit Mat1 Cost \$106.00 \$111.00 Unit Mat7 Cost \$1.37 Unit Mat7 Cost \$0.788	Mat7 Cost \$223,903.68 Mat7 Cost \$24,698.00 \$22,200.00 Mat7 Cost \$31,915.52 Mat7 Cost \$55,064.63 \$19,599.94 \$4,242.78	Unit Labor Cost \$2.18 Unit Labor Cost \$23.50 Unit Labor Cost \$5.60 Unit Labor Cost \$5.60 Unit Labor So.31	Labor Cost \$209,489,28 Labor Cost \$10,175,50 Labor Cost \$130,457,60 Labor Cost \$22,025,85 \$7,839,97 \$3,250,52	Cost Unit Equip. Cost \$8.60 Unit Equip. Cost Unit Equip.	Equip. Cost \$3,773.80 Equip. Cost	Total Item Cost \$433,392,9 Total Item Cost \$24,698.0 \$22,200.0 \$13,899,3 Total Item Cost \$162,373.1 Total Item Cost \$77,090.4 \$27,493.9 \$7,493.3 \$4,507,375.8 \$4,011,564.5 \$50,173.4
Stressing Tendons Columns Item Normal Weight Concrete, 4000 psi Normal Weight Concrete, 5000 psi Placing concrete, 24" columns Item Formwork, Job built, 2 use Item Reinforcing, #10 Bars Reinforcing, #3 Bars Reinforcing, #3 Bars Subtotals Adjusted for Location (8.89)	0.52 Size 24"x24" 24"x24" 24"x24" Size 24"x24" LBS/FT 4.303 2.670	Length Varies Varies Varies Varies Length 7" Length 16512 9472	Quantity 32 32 32 32 Quantity 32 Quantity	7 otal CY 233 200 433 SFCA 23296 LBS 71051.136 25290.24	Cost \$2.33 Unit Mat1 Cost \$106.00 \$111.00 Unit Mat7 Cost \$1.37 Unit Mat7 Cost \$0.788	Mat7 Cost \$223,903.68 Mat7 Cost \$24,698.00 \$22,200.00 Mat7 Cost \$31,915.52 Mat7 Cost \$55,064.63 \$19,599.94 \$4,242.78	Unit Labor Cost \$2.18 Unit Labor Cost \$23.50 Unit Labor Cost \$5.60 Unit Labor Cost \$5.60 Unit Labor So.31	Labor Cost \$209,489,28 Labor Cost \$10,175,50 Labor Cost \$130,457,60 Labor Cost \$22,025,85 \$7,839,97 \$3,250,52	Cost Unit Equip. Cost \$8.60 Unit Equip. Cost Unit Equip.	Equip. Cost \$3,773.80 Equip. Cost	Total Item Cost \$433,392.9 Total Item Cost \$24,698.0 \$22,200.0 \$13,899.3 Total Item Cost \$162,373.1 Total Item Cost \$77,090.4 \$27,439.9 \$7,499.3 \$4,507,375.8 \$4,011,564.5 \$60,173.4 \$140,404.7
Stressing Tendons Columns Item Normal Weight Concrete, 4000 psi Normal Weight Concrete, 5000 psi Placing concrete, 24" columns Item Formwork, Job built, 2 use Item Reinforcing, #10 Bars Reinforcing, #3 Bars Reinforcing, #3 Bars Adjusted for Location (9.89) Design Contringency (1.5%) Escalation Contingency (1.5%) Insurance (3%) Bonds (2%)	0.52 Size 24"x24" 24"x24" 24"x24" Size 24"x24" LBS/FT 4.303 2.670	Length Varies Varies Varies Varies Length 7" Length 16512 9472	Quantity 32 32 32 32 Quantity 32 Quantity	7 otal CY 233 200 433 SFCA 23296 LBS 71051.136 25290.24	Cost \$2.33 Unit Mat1 Cost \$106.00 \$111.00 Unit Mat7 Cost \$1.37 Unit Mat7 Cost \$0.788	Mat7 Cost \$223,903.68 Mat7 Cost \$24,698.00 \$22,200.00 Mat7 Cost \$31,915.52 Mat7 Cost \$55,064.63 \$19,599.94 \$4,242.78	Unit Labor Cost \$2.18 Unit Labor Cost \$23.50 Unit Labor Cost \$5.60 Unit Labor Cost \$5.60 Unit Labor So.31	Labor Cost \$209,489,28 Labor Cost \$10,175,50 Labor Cost \$130,457,60 Labor Cost \$22,025,85 \$7,839,97 \$3,250,52	Cost Unit Equip. Cost \$8.60 Unit Equip. Cost Unit Equip.	Equip. Cost \$3,773.80 Equip. Cost	Total Item Cost \$433,392.9 Total Item Cost \$24,698.0 \$22,200.0 \$13,899.3 Total Item Cost \$162,373.1 Total Item \$77,090.4 \$27,493.9 \$4,507,375.8 \$4,011,564.5 \$60,173.4 \$140,404.7 \$120,346.9 \$80,231.0
Stressing Tendons Columns Item Normal Weight Concrete, 4000 psi Normal Weight Concrete, 5000 psi Placing concrete, 24" columns Item Formwork, Job built, 2 use Item Reinforcing, #10 Bars Reinforcing, #8 Bars Reinforcing, #8 Bars Reinforcing, #3 Bars Adjusted for Location (0.89) Design Contingency (1.5%) Escalation Contingency (3.5%) Insurance (3%)	0.52 Size 24"x24" 24"x24" 24"x24" Size 24"x24" LBS/FT 4.303 2.670	Length Varies Varies Varies Varies Length 7" Length 16512 9472	Quantity 32 32 32 32 Quantity 32 Quantity	7 otal CY 233 200 433 SFCA 23296 LBS 71051.136 25290.24	Cost \$2.33 Unit Mat7 Cost \$106.00 \$111.00 Unit Mat7 Cost \$1.37 Unit Mat7 Cost \$0.788	Mat7 Cost \$223,903.68 Mat7 Cost \$24,698.00 \$22,200.00 Mat7 Cost \$31,915.52 Mat7 Cost \$55,064.63 \$19,599.94 \$4,242.78	Unit Labor Cost \$2.18 Unit Labor Cost \$23.50 Unit Labor Cost \$5.60 Unit Labor Cost \$5.60 Unit Labor So.31	Labor Cost \$209,489,28 Labor Cost \$10,175.50 Labor Cost \$130,457.60 Labor Cost \$22,025.85 \$7,839.97 \$3,250.52 \$1,653,489,53	Cost Unit Equip. Cost \$8.60 Unit Equip. Cost Unit Equip.	Equip. Cost \$3,723.80 Equip. Cost Equip. Cost \$48,620.36	Total Item Cost \$433,392.9: Total Item Cost \$24,698.0: \$22,200.0: \$13,899.1 Total Item Cost \$162,373.1: Total Item Cost \$77,090.4: \$27,439.9 \$4,507,375.8 \$4,011,564.5 \$60,173.4 \$140,404.7; \$120,346.9

Structural Option Potomac, MD

Consultant: Professor Parfitt 05/07/2010

-		<u>Rede</u>	signed Structure Cos	t Estimate	
	Kyle	E WAGNER	THESIS	Cost	(
	RE	DESIGNED	FOUNDATIONS		
5 SQUARES 5 SQUARES FILLER	0	32" DEEP		32" DEEP	
	3				
200 SHEETS 200 SHEETS 200 SHEETS		32" DEEP		32" DEEP	
3-0235 — 3-0236 — 3-0237 — 3-0137 —			L FNDATIONS 17'X17'	(1)	
сомет					
00		VOLUME OF C		7	
0)] + 8[(17×17)(34)		
		9633 ft3.	CK = 35-	7 (4)	
		REBAR			
			- USE 20 #8 EWB		
		#8: 12	2(20(17'))] = 816	00 Ft	

Structural Option Potomac, MD

Consultant: Professor Parfitt 05/07/2010

REDESIGN - FIREPROOFING ANELAGE WISKSS FOR GEAMS SSUMMOSS 9 1 1 18 14 18 14 18 14 18 14 1 1 3 60 TOTAL LENGTH OF BEAMS > 30578 1 TOTAL LENGTH OF BEAMS > 30578 1 ANELAGE WILLS FOR COLUMNS ANELAGE WILLS FOR COLUMNS ANELAGE WILLS FOR COLUMNS TOTAL LENGTH OF COLUMNS ANELAGE WILLS FOR COLUMNS TOTAL LENGTH OF COLUMNS > 3216 1 3216 (5,67) = 18235 5F FP M COLUMNS . 152889 + 18235 = 171124 5F FIREPROOFING ECQUIRED DECK NEED NOT BE SPRAKED	Z	COST	THESIS	KYLE WAGNER	
AREA: 4"+18"+4"+8"+4"+18"+4" -> 60" 18 18 19 10 10 10 10 10 10 10 10 10			FIREPROPING	REDESIGN -	
12 5 3 5 F PER LF OF BEAM 17 17 17 17 17 17 17 17 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19				AUERAGE WISKS	
#8" / 12 = 5" -> 55# PER LIF OF BEAM 17	**			13	5 SQUARES 5 SQUARES FILLER
\$0000 TOTAL LENGTH OF BEAMS > 30578' \$0000 30578' (5) = 152889 SF FIREPRODUNG ON BEAMS SECTION SECTION ANERAGE WILLY 82 FOR COLUMNS 14		PER LF OF BEAM	60" = 5' -> 55#	18"1	(0 (0 (0
AVERAGE WILLY82 FOR COLUMNS AREA: 5"+14"+5"+10"+5"+14"+5"+10" > 68 Let of Columns 5.675 5.675 FEE LF OF COLUMNS TOTAL LENGTH OF COLUMNS > 3216' 3216' (5.67) = 18235 FP OU COLUMNS 152889 + 18235 171124 3F FIREPROOFING REQUIRED					100
4ech: 5"+14"+5"+10"+5"+14"+5"+10" > 68 14" 18 = 5.67' = 5.675 PECLE OF COLUMN TOTAL LENGTH OF COLUMNS > 3216' 3216' (5.67) = 18235 SE EP SU COLUMNS 152889 + 18235 = 171124 SE FIREPROFINO REQUIRED	W/D	F FILE PROOPING ON BEAM			
14" 68 = 5.67' = 5.675 PER LE OF COLUMN 10" TOTAL LENGTH OF COLUMNS = 3216' 3216' (5.67) = 18235 FF FP ON COLUMNS 152889 + 18235 = 171124 3F FIREPROFING REQUIRED	64	", ="+14"+5"+15" -> L9"			COME
TOTAL LENGTH OF COWMINS > 3216' 3216' (5.67) = 18235 SF FP SU COLUMNS 1. 152889 + 18235 = 171124 SF FIREPROFING REQUIRED				14"	
: 152889 + 18235 = 171124 3F FIEEPEODFING EEQUIZED		, 3216'	NOTH OF COWMISS >		
= 171124 3F FIREPROOFING REQUIRED		F FP ON COLUMN'S	(5,67) = 18235 55	3216	
			+ 18237	., 152889	
DECK NEED NOT BE SPRAKED		required	124 SF FIREPROOFING	= 171	
		eaked	LK NEED NOT BE SPI	DE	
	1				

Structural Option Potomac, MD

Consultant: Professor Parfitt 05/07/2010

			Str	uctural S	teel Estima	ite				
Member Size	Unit	Quantity	Total Length (LF)	Unit Mat'l Cost	Mat'l Cost	Unit Labor Cost	Labor Cost	Unit Equipment Cost	Equipment Cost	Total Item Cost
Beams Wide Flange Shapes			NA 14/10/1914 2001							
W8x10	LF	231	2561.09	\$18.15	\$46,484	\$4.47	\$11,438	\$3.19	\$8,170	\$66,09
W10x12	LF	126	3058.16	\$21.78	\$66,607	\$4.47	\$13,658	\$3.19	\$9,756	\$90,02
W12x14	LF	56	1190.00	\$25.41	\$30,238	\$3.05	\$3,626	\$2.18	\$2,592	\$36,45
W12x16 W12x19	LF LF	28 378	784.00 10568.81	\$29.15 \$34.49	\$22,854 \$364,465	\$3.05 \$3.05	\$2,389 \$32,203	\$2.18 \$2.18	\$1,708 \$23,019	\$26,95 \$419,68
W12x19 W14x22	LF	70	2051.00	\$39.93	\$81,896	\$2.71	\$52,203	\$1.94	\$3,971	\$91,41
W16x26	LF	14	483.00	\$47.30	\$22,846	\$2.68	\$1,296	\$1.91	\$924	\$25,06
W14x30	LF	14	483.00	\$54.45	\$26,299	\$2.98	\$1,440	\$2.12	\$1,025	\$28,76
W16x31	LF	112	3409.00	\$56.10	\$191,245	\$2.98	\$10,162	\$2.12	\$7,237	\$208,64
W18x40	LF	28	870.31	\$72.60	\$63,185	\$4.04	\$3,513	\$2.15	\$1,867	\$68,56
W21x44 W21x50	LF LF	14 14	483.00 483.00	\$79.75 \$90.75	\$38,519 \$43,832	\$3.65 \$3.65	\$1,764 \$1,764	\$1.94 \$1.94	\$935 \$935	\$41,21 \$46,53
W18x55	LF	56	672.00	\$100.10	\$67,267	\$4.26	\$2,861	\$2.27	\$1,523	\$71,65
W24x62	LF	28	1059.31	\$112.20	\$118,855	\$3.50	\$3,705	\$1.86	\$1,969	\$124,52
W24x68	LF	28	1180.62	\$123.20	\$145,452	\$3.50	\$4,130	\$1.86	\$2,195	\$151,77
W27x84	LF	28	1241.31	\$152.90	\$189,796	\$3.26	\$4,042	\$1.74	\$2,157	\$195,99
Columns										
Wide Flange Shapes			22 200			40.00	4.5	12/19/20	120	701 22
W10x33 W10x39	LF LF	4	56.00 108.00	\$61.53 \$72.72	\$3,446 \$7,853	\$2.55 \$2.55	\$143 \$276	\$1.82 \$1.82	\$102 \$196	\$3,690 \$8,320
W12x40	LF	20	384.00	\$74.58	\$28,639	\$2.55	\$981	\$1.82	\$699	\$30,31
W14x43	LF	8	112.00	\$80.17	\$8,979	\$2.55	\$286	\$1.82	\$204	\$9,46
W14x48	LF	8	112.00	\$89.50	\$10,024	\$2.67	\$299	\$1.91	\$214	\$10,53
W10x49	LF	4	108.00	\$91.36	\$9,867	\$2.67	\$288	\$1.91	\$206	\$10,36
W12x50	LF	4	108.00	\$93.23	\$10,068	\$2.67	\$288	\$1.91	\$206	\$10,56
W12x53	LF	8	216.00	\$98.82	\$21,345	\$2.67	\$576	\$1.91	\$412	\$22,333
W14x53 W14x61	LF LF	4	108.00 108.00	\$98.82 \$113.73	\$10,672 \$12,283	\$2.67 \$2.67	\$288 \$288	\$1.91 \$1.91	\$206 \$206	\$11,16 \$12,77
W12x65	LF	8	238.00	\$121.19	\$28,844	\$2.80	\$667	\$2.00	\$476	\$29,98
W14x68	LF	4	108.00	\$126.79	\$13,693	\$2.80	\$303	\$2.00	\$216	\$14,21
W12x72	LF	4	130.00	\$134.24	\$17,452	\$2.80	\$364	\$2.00	\$260	\$18,07
W10x77	LF	4	130.00	\$143.57	\$18,664	\$2.80	\$364	\$2.00	\$260	\$19,28
W14x82	LF	4	108.00	\$152.89	\$16,512	\$2.80	\$303	\$2.00	\$216	\$17,03
W14x90 W14x99	LF LF	4	130.00 130.00	\$167.81 \$184.59	\$21,815 \$23,996	\$2.80 \$2.80	\$364 \$364	\$2.00 \$2.00	\$260 \$260	\$22,43 \$24,62
W12x106	LF	4	130.00	\$197.64	\$25,693	\$2.80	\$373	\$2.00	\$266	\$26,33
W14x109	LF	8	216.00	\$203.23	\$43,898	\$2.87	\$620	\$2.05	\$442	\$44,96
W14x176	LF	8	216.00	\$328.15	\$70,881	\$3.02	\$652	\$2.16	\$466	\$71,99
W14x257	LF	8	260.00	\$479.18	\$124,586	\$3.23	\$840	\$2.31	\$599	\$126,020
Applied Fireproofing										
Sprayed Cementitious FP										
All Beams- 1" Thick	SF	152889		\$0.53	\$81,031	\$0.53	\$81,031	\$0.08	\$12,231	\$174,29
All Columns- 2-3/16" Thick	SF	18235		\$1.13	\$20,606	\$1.14	\$20,788	\$0.18	\$3,282	\$44,67
Moment Connections										
Connections at Cantilever	EA	56		\$1,000.00	\$56,000		\$0		\$0	\$56,000
Studs										
Shear Studs	ΕA	19544		\$0.71	\$13,876	\$0.74	\$14,463	\$0.38	Č7 427	éar ze
Snear Studs	EA	15344		\$0.71	\$15,876	\$0.74	\$14,403	50.38	\$7,427	\$35,76
Subtotal Costs					\$2,220,562		\$228,749		\$99,296	\$2,548,607.6
Adjusted for Location (0.89)										\$2,268,260.7
Design Contingency (1.5%)										\$34,023.9 \$79,389.1
Escalation Contingency (3.5%) Insurance (3%)										\$79,389.1 \$68,047.8
Bonds (2%)										\$45,365.2
Overhead & Profit (10%)										\$226,826.0
, , , ,								Total Struct	tural Steel Cost:	\$2,721,912.9

Park Potomac Office Building "E"

Structural Option Potomac, MD

Consultant: Professor Parfitt 05/07/2010

			Stru	ctural Co	ncrete Estim	iate					
Spread Footings											
spread Footings		1			Unit Mat'l		Unit Labor		Unit Equip.	Equip.	Total Item
Item	Size	Depth	Quantity	Total CY	Cost	Mat'l Cost	Cost	Labor Cost	Cost	Cost	Cost
Normal Weight Concrete, 3000 PSI	17'-0" x 17'-0"	2'-10"	12	357	\$101.00	\$36,057.00	COSE	Lubor Cost	COST	COSE	\$36,057,0
Place Concrete Footings, Direct chute	17'-0" x 17'-0"	2'-10"	12	357	Ç101.00	000,007,000	\$14.45	\$5,158,65	\$5.25	\$1.874.25	\$7,032.9
1355 051181 010 1 0011 901 011 051 0110 0	27 0 1127 0	2.10		007			Q2 11 10	ÇUJIDUIUD	VOILE	VIJO7 HED	Ç.,100E.
					Unit Mat'l	il i	Unit Labor		Unit Equip.	Equip.	Total Item
Item	Size	Depth	Quantity	SFCA	Cost	Mat'l Cost	Cost	Labor Cost	Cost	Cost	Cost
Forms in Place, plywood, 2 use	17'-0" x 17'-0"	2'-10"	12	2312	\$1.20	\$2,774.40	\$3.27	\$7,560.24		(0,0,0,0)	\$10,334.6
The second page of the second pa											1.5.2
					Unit Mat'l		Unit Labor		Unit Equip.	Equip.	Total Item
item	LBS/FT	Length	Quantity	LBS	Cost	Mat'l Cost	Cost	Labor Cost	Cost	Cost	Cost
Footing #8 Rebar, A615 Grade 60	2,67	17'	480	21787.2	\$0.70	\$15,251,04	\$0,20	\$4,357.44			\$19,608.4
-		1.0									
Elevated Slabs											
					Unit Mat'l		Unit Labor		Unit Equip.	Equip.	Total Item
item	Area (SF)	Depth	Quantity	Total CY	Cost	Mat'l Cost	Cost	Labor Cost	Cost	Cost	Cost
Light Weight Concrete, f'c=3000 psi	26000	5.5"	7	2380	\$126.25	\$300,475.00					\$300,475.0
Placing elevated slab, All floors pumped	26000	5.5"	7	2380			\$15.50	\$36,890.00	\$5.65	\$13,447.00	\$50,337.0
					Unit Mat'l		Unit Labor		Unit Equip.	Equip.	Total Item
Item	Area (SF)	Depth	Quantity	CSF	Cost	Mat'l Cost	Cost	Labor Cost	Cost	Cost	Cost
6x6 - W2.1 x W2.1	26000	5.5"	7	260	\$26.50	\$6,890.00	\$23.00	\$5,980.00			\$12,870.0
					Unit Mat'l		Unit Labor		Unit Equip.	Equip.	Total Item
Item	Area (SF)	Depth	Quantity	Total SF	Cost	Mat'l Cost	Cost	Labor Cost	Cost	Cost	Cost
Composite Decking, 2" deep, 18 Gauge	26000	-	6	26000	\$3.84	\$99,840.00	\$0.40	\$10,400.00	\$0.04	\$1,040.00	\$111,280.0
Roof Decking, 1-1/2" deep, 18 Gauge	26000	-	1	26000	\$1.61	\$41,860.00	\$0.31	\$8,060.00	\$0.03	\$780.00	\$50,700.0
				•	•						
Subtotals						\$503,147.44		\$78,406.33		\$17,141.25	\$598,695.0
Adjusted for Location (0.89)											\$532,838.5
Design Contingency (1.5%)											\$7,992.5
Escalation Contingency (3.5%)											\$18,649.3
Insurance (3%)											\$15,985.1
Bonds (2%)											\$10,656.7
Overhead & Profit (10%)											\$53,283.8
								Total	Structural Con	crete Cost	\$639,406.2

Park Potomac Office Building "E"

Structural Option Potomac, MD

Consultant: Professor Parfitt 05/07/2010

Thesis Final Report

Summary

Original Structure								
	Mat'l	Labor	Equipment	Total	COST/SF			
Foundations	\$272,327	\$59,403	\$250	\$331,980	\$1.90			
Superstructure	\$2,532,939	\$1,594,08 <i>7</i>	\$48,370	\$4,175,396	\$23.86			
Total Incl. Addition	al Costs				\$27.83			
		Steel Redes	ign					
	Mat'l	Labor	Equipment	Total	COST/SF			
Foundations	\$54,082	\$1 <i>7,</i> 076	\$1,874	\$73,033	\$0.42			
Superstructure	\$2,669,627	\$290,079	\$11 <i>4,</i> 563	\$3,074,269	\$1 <i>7.57</i>			
Total Incl. Addition	al Costs				\$19.43			
					-			

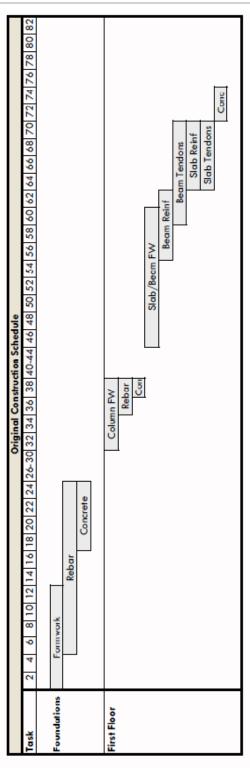
Note: Does not include impact of additional building envelope required. See report for complete analysis.

Consultant: Professor Parfitt 05/07/2010

Thesis Final Report

Project General Conditions

General Conditions						
ITEM	RATE	UNIT		COST		
Vice President	\$2,250.00	Week	4	\$9,000.00		
Project Executive	\$2,000.00	Week	4	\$8,000.00		
Senior Superintendent	\$3,500.00	Week	4	\$14,000.00		
Project Manager	\$2,500.00	Week	4	\$10,000.00		
Asst. Project Manager	\$1,500.00	Week	4	\$6,000.00		
Project Administrator	\$200.00	Week	4	\$800.00		
Safety Coordinator	\$150.00	Week	4	\$600.00		
Site Labor	\$1,200.00	Week	4	\$4,800.00		
Telephone Service	\$100.00	Mo.	1	\$100.00		
Temporary Power	\$12,000.00	Mo.	1	\$12,000.00		
Potable Water	\$75.00	Mo.	1	\$75.00		
Temporary Toilets	\$1,000.00	Mo.	1	\$1,000.00		
Field Office Trailer	\$3,000.00	Mo.	1	\$3,000.00		
Construction Site Fence	\$750.00	Mo.	1	\$750.00		
Storage Trailer	\$200.00	Mo.	1	\$200.00		
Equipment	\$750.00	Mo.	1	\$750.00		
Computers	\$3,000.00	Mo.	1	\$3,000.00		
Office Supplies	\$750.00	Mo.	1	\$750.00		
Dumpsters	\$2,000.00	Mo.	1	\$2,000.00		
Mail/Shipping	\$400.00	Mo.	1	\$400.00		
Vehicle Expenses	\$3,000.00	Mo.	1	\$3,000.00		
Misc. Expenses	\$500.00	Week	4	\$2,000.00		
Total				\$82,225.00		


Note: Average values for G.C. were determined from projects of similar size and scope

Consultant: Professor Parfitt 05/07/2010

	12	Tierre	SCHEDULE
	KYLE WAGNER	THESIS	XHEDILE
	DEIGINAL STE	COCTURE - TASK DURA	mons
	MAT FOUNDAM	ons:	
5 SQUARES 5 SQUARES 5 SQUARES FILLER		115 SECA _ 11.98 DAYS	
SHEETS	REBAR:		62609 = 20.9 DAYS
3-0235 — 50 3-0237 — 200 3-0137 — 200	Conc:	350 CK 4.8 DAKS	5
_	COLUMNS:		
сомет	REBAR:	710511b + 25291 + 5475 4600 + 4600 + 3000	
	Formwork	C: 23296 _ 108 DAYCS	> 15 DAYS FLE -> Z CREWS -> 8 DAYS FLE
	Conc: L	133CX _ 4.71 DAYS &	a I Day Eir
	BEAMS/SLAR	.	
		x: 182000 + 408 =	352 DAYS ≈ 17 DAYS (3 CREWS)
	REINF:	1884961b + 129705 = 9 32001b = 3200	9 DAYS \$ 14 DAYS FLOOR > 7 DAYS FLE (2 CREUPS)
	(BEAM)	1200	S & ZZ DAYS FLOOR > NOAYS FLE (2 CREWS)
	REINF (SLA	B) = 226318/5800 = 39	DAYS & 6 PAYS FLOOR
	TENDONS	(SLAB) = 135/85/1200 = 113	2 DAYS \$ 16 DAYS TUR \$ 8 DAYS / FLE (2CRE
	Conc : 3	934/140 = 28.1 51	1 DAYS FLE

Consultant: Professor Parfitt 05/07/2010

Thesis Final Report

Note: Not complete project schedule. Schedule shows planning for single floor only.

Structural Option

Potomac, MD

Consultant: Professor Parfitt

05/07/2010

	<u>Steel Schedule</u>
	KYLE WAGNER THESIS SCHEDULE
	REPESIGNED STEWCHORE - TASK DURATIONS
	Footings:
5 SQUARES 5 SQUARES FILLER	Forms: 2312 SECA - 6.2 DAYS
SHEETS — 5 SHEETS — 5 SHEETS — FI	REBAR: 21787 16 _ 3.02 DAYS
3-0236 — 100 3-0237 — 200 3-0137 — 200	CONCRETE POUR: 357 CY 2.4 PAYS
ы	COLUMNS: 912 4/69x - 1032 4/69x
COMET	1032 LF + 7365 + 562LF + 260 - 3.3 DAYS 1032 LF 984LF 960LF 912 \$ 10AY PERFLOOR
0	BEAMS: 600 4/04x - 1190 4/04x
	5619.25 + 12543 + 3892 + 672 + 871 , 2051 + 483 , 966 + 880 900 900 1000 1064
	2240 1241 36.1 DAYS M5 DAYS PER FLOOR
	STUDS:
	19544 = 19.74 DAYS & 3 DAYS PER FLOOR
	SLABS: 7(26006) = 50.56 DAYS & DAYS PERFLE
	WWF: 260 - 8.39 DAYS \$ 2 DAYS FLE
	CONC: 2380 CK = 17 DAYES \$ 1-2 DAYES FLE

Consultant: Professor Parfitt 05/07/2010

Thesis Final Report

Note: Not complete project schedule. Schedule shows planning for two floors only.

Structural Option Potomac, MD

Consultant: Professor Parfitt 05/07/2010

	KYLE WAGNER	THESIS	SCHEDOLE
	STEEL PROSECT		
(O) (O) (O)) + 6 = 92 DAKS	
5 SQUARES 5 SQUARES 5 SQUARES FILLER	DRIGINAL PROS		
3-0235 — 50 SHEETS — 3-0236 — 100 SHEETS — 3-0237 — 200 SHEETS — 3-0137 — 200 SHEETS —	30 + 7(49	3) = 366 DAYS	
	366-92 = 274	4 WORK PAYS	
COMET	274 . 7 =	383 CALEDDAR D	Accs
	≈ 13 mora	nes	
	ASSUME 13	MONTHS SAVED ON	SCHEDOLE